NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

| DESIGN AND EVALUATION OF AN INTEGRATED, SELF-
CONTAINED GPS/INS SHALLOW-WATER AUV
NAVIGATION SYSTEM(SANS)

by
Randy G. Walker
June, 1996

Co-Advisors: Xiaoping Yun
Robert B. McGhee

Approved for public release; distribution is unlimited.

19960628 122

DTIC QUALFTY misrmcraD 1

-2

AD NUMBER DATE
O P DTIC ACCESSION
WALKER, RANDY G. dyve U o
’ INEAR NOTICE
1. REPORT IDENTIFYING INFORMATION REQUE!
A. ORIGINATING AGENCY Superintendent C\l
Code 825D, Naval Postgraduate School, Mtry | 1 Puwyo O]
2 93943-5000 reverse
Deslgn and Evaluation or an Integrated, 2. Compl
Self-contained GPS/INSS Shallow-Water AUV | 3. Arach O
C. MONITOR REPORT NUMBE mailed
Navigation System (SANS 4, Useun Nd -
only.
D. PREPARED UNDER CONTRACT NUMBER m
oTie: O
2. DISTRIBUTION STATEMENT 1. Assign 0)
2 Retun c)
A P
FORM PREVIOUS EDITIONS ARE OBSOLETE
DT'CFED 8650

-

REPORT DOCUMENTATION PAGE oVt N o018

Public reparting burden for this collection of information is estimated to average 1 hour per responss, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviswing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June, 1996 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

DESIGN AND EVALUATION OF AN INTEGRATED, SELF-
CONTAINED GPS/INS SHALLOW-WATER AUV NAVIGATION

SYSTEM (SANS)
6. AUTHOR(S)
Walker, Randy G.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
. REPORT NUMBER
Naval Postgraduate School
Monterey, CA 93943-5000
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRE SS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
he views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

| “ P——
12a. DISTRIBUTION/ AVAILABILITY STATEMENT . R 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

The main problem addressed by this research is to find an alternative to the use of large and/or expensive equipment required

by conventional navigation systems to accurately determine the position of an Autonomous Underwater Vehicle (AUV) during
all phases of an underwater search or mapping mission.

The approach taken was to advance an existing integrated navigation system prototype which combines Global Positioning
System (GPS), Inertial Measurement Unit (IMU), water speed, and heading information using Kalman filtering techniques.
The hardware and software architecture of the prototype system were advanced to a level such that it is completely self-
contained in a relatively small, lightweight package capable of on-board processing of sensor data and outputting updated
position fixes at a rate of 10 Hz; an improvement from the 5 Hz rate delivered by the prototype. The major changes to the
preceding prototype implemented by this research were to install an on-board processor to locally process sensor outputs, and
improve upon the analog filter and voltage regulation circuitry.

Preliminary test results indicate the newly designed SANS provides a 100% performance improvement over the previous

prototype. It now delivers a 10 Hz update rate, and increased accuracy due to the improved analog filter and the higher sampling
rate provided by the processor.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Autonomous Underwater Vehicles, GPS/INS integration, navigation, NPS 179
AUV, Kalman filtering [16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS ?AGE OF ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
i Prescribed by ANSI Std. 239-18

Approved for public release; distribution unlimited.

DESIGN AND EVALUATION OF AN INTEGRATED, SELF-CONTAINED GPS/
INS SHALLOW-WATER AUV NAVIGATION SYSTEM(SANS)

Randy G. Walker
Captain, United States Marine Corps
B.S.E.E, San Diego State University, 1990

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
and
MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
June 1996

Randy G. Walker

Approved By: (\’L Coma L5 (/\,A
Xiaoping “Yun, Co-Advisor

[4

Robert B. McGhee, Co-Advisor

ricsR. Ba con
N /
Herschel H. Loomis,

Department of Elecfyical njj?wr Engineering
~ \//

Ted Lewis, Chairman
Department of Computer Science

il

iv

ABSTRACT

The main problem addressed by this research is to find an alternative to the use of large
and/or expensive equipment required by conventional navigation systems to accurately
determine the position of an Autonomous Underwater Vehicle (AUV) during all phases of
an underwater search or mapping mission.

The approach taken was to advance an existing integrated navigation system prototype
which combines Global Positioning System (GPS), Inertial Measurement Unit (IMU),
water speed, and heading information using Kalman filtering techniques. The hardware
and software architecture of the prototype system were advanced to a level such that it is
completely self-contained in a relatively small, lightweight package capable of on-board
processing of sensor data and outputting updated position fixes at a rate of 10 Hz; an
improvement from the 5 Hz rate delivered by the prototype. The major changes to the
preceding prototype implemented by this research were to install an on-board processor to
locally process sensor outputs, and improve upon the analog filter and voltage regulation
circuitry.

Preliminary test results indicate the newly designed SANS provides a 100%

performance improvement over the previous prototype. It now delivers a 10 Hz update rate,

and increased accuracy due to the improved analog filter and the higher sampling rate

provided by the processor.

TABLE OF CONTENTS

L INTRODUCGTTIONooouiiininiinrenteieenreeenerieesessessesessssesesssssesseseseesssssnessssssssessssons 1
A, BACKGROUNDccoomttrrinteeeete ettt ese st sves e eeessseseuseeassssssssssesens 1
B. RESEARCH QUESTIONS ...ttt et eese e e es e seseennan 2
C. SCOPE, LIMITATIONS, AND ASSUMPTIONSooooeeteeeeeeereeereereecresseenns 3
D. ORGANIZATION OF THESISc.oooiiierieiiereeereseteseeeeeeeeoeeseseeseseessenns 3
II. SURVEY OF RELATED WORKcooiiiiiritiitirerceieeeteateteceveeesssseesesssesssensanas 5
A, INTRODUCTIONcoooiiirinriirieereerreteretiereeseessesssssessssosescncssessssesessssessssssas 5
B GPS NAVIGATION ...ttt eeeesce st seeseesaesessssesesesenesa s ssssasns 5
C INERTTAL NAVIGATION ..ottt ieeseeeseessesesteonessesassessasssennas 8
D. INTEGRATED GPS/INS NAVIGATIONoooieteeeeeeeeeeeeeeeeeeeeeersereessesenns 9
E. AUV SUBMERGED NAVIGATIONcooouveuirerireneeeeeeeneeseseesteeeseeseens 10
F THE PREVIOUS PROTOTYPEoooiierieitieeetieeeeeeee oot eeeeeesesessassessens 11
G, SUMMARY .ottt et et et e s s sesesas e st eeeesssesenne 15
II. EVALUATION OF THE PROTOTYPE SANS HARDWARE........cccoovmeeeernnn. 17
A INTRODUCTIONctieiiinieirereneretster st teres e essesesessseseseeneseneeseens 17

B NOISE CHARACTERISTICS OF THE MOTIONPAK INERTIAL
SENSORS UNIT ..ottt ettt seese e cve st essesseseseseesssesssssesaeseas 17
C THE SIGNAL PROCESSING AND CONDITIONING CIRCUITRY.......... 21
D. SUMMARY ...ottintitesinreteienteretent et e eessssesssesssssosesstssesssssnsosessensensssessssens 24
IV. SYSTEM HARDWARE CONFIGURATIONc.ocovteieeeteeeeeeeeeeeeeseereeeeseerenesns 25
A INTRODUCTIONccooiintrtninreriereenteessenseseesesesesessesossssessssossessossnsesessesen 25
B HARDWARE DESCRIPTIONcoviieeeitietieecteeeieteeeeeteseenesaeseaesnesesens 25
1. COMPULETcovnriritctieinctereteee e e sae st st es b st s e st st saes s s s e onesenee 25
a. 486SLC DX2 CPU Module........ccovvivirererineneereisreeeeeeeeeeseereeens 26
b. DC-DC Power Module...........cooverveiirinrenriieeeieeeeeseeeeeeeeeeeessseeenns 28
C. VGA Adapter Module..........ooeeeererereereereriieeeeeees e seeeenene 28
d. PCHOMOAUIC......comieierinirie ettt e e ee s e s e e e e e saens 28
€. PCMCIA MOGQUIEueoereerrereeeetieeereee et ceee e eeeeeeeseesessseseens 28
f. Ethernet Moduleccooeiivininiieecreeiereeeeeeer e eenens 29
g. Analog to Digital (A/D) Module..........ooeveeeeeereeiiereeeeeeereereerenns 29
h. DRAMMOQUIEooontirirrereteeecteieretee e saee s s sesasseens 30
2 Inertial Measuring Unit........ccocceeeeereereeriiereceriieeeeeeneeseesesseseenessssesens 30
3 GPS/DGPS ReECEIVET PAircvevieeeeteeeeeececeeeeeeeeeee e s 31
4 LOW-Pass FIIEIS....coouetieirereetetee ettt ettt eeve et ae e enans 32
5 DC-DC CONVEILETceuveurererrrirrrerererieesecrcre et esaesesaeeeeneeseeseesessessesens 33
6 RIDDON CabIE........oioiieiiiieeieretet et e e se e sn s e 33
7 COMPASSoveeiiieicnctecsteneesete e se st ersa s s e e stetenesnesssaesemsane 35
8. Other COMPONENLScoveuieirreniriererirrreriestesesesiresessesesesessenenssssssssessseses 35
C. SUMMARY c.iiieiteieinneereeeae e etese e sesessssestessssssssosessnsessssssssss s sens 35

vii

V. SOFTWARE DEVELOPMENTccceoesiniimiinnininiensnteseseseesesssssesessesessesesesens 37

A. INTRODUCTIONcotoetetireereeeereeecreereseeteeaeeseeseeseessesesresessessaenes creeenenaens 37
B. SOFTWARE DESCRIPTION.........ccoveveererererenene. eeveereersaaeetessresntreaeeaan 37
1. Compass Dataccccoeevvvevrrevveeneennnnee. crveens ceeeeerereeesaneesaeesaeanarnes vreeene 37
2. GPS Data........ reeertee et aeste e aaeesaaeesbesrnas erterereesrenentesnaearassaesnreenses .37
3. Inertial SENSOr Data........cc.eeeeieierenreieiinriier et eseanes 39
Ao AZD ettt st 39
C. SUMMARY ...cotiiviitenteininienteienresessrenresvereeseessssasosnesssnns reeevessrasstaesaasraens 41
VI. SYSTEM TESTING........ cevenees veeeeeeene creeeeeene reeeteete e eesteesae et ee s aesaaesrae st aessnann .43
A. INTRODUCTIONooiiitiiieninenirrietieenreterensessessesseseesesseseressesssesessessssenes 43
B. IMU TESTINGccootiiiiiricinentntereerentsresiesessessseaescsssestesesesssressssosessans 43
C. STATIC GPS TESTING......... eersree sttt te st ae e aesesane s re et e e se e nrerseeesraensens 49
D. STATIC HEADING TESTING rterteeteesaaesaaesasaessrennns ceeeseesseeraanes ...50
E. SUMMARY ..ootitiinenieietntnteere et ssese s ssssesss e sasnsone ceereeeenes ceeened]
VII. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 53
A. CONCLUSIONSoteertrtetetntnteretnieteese e v eses e sesssess st etssesssessnssessossns .53
B. RECOMMENDATIONS FOR FUTURE WORKotterienreenienieeeerecrenenn, 54
APPENDIX A; : Real Time Navigation Source Code (C++)......... oo et et eae e saneanes 57
A. TOWTYPES.H........ reeerreraesaesteseetesiaenans
B. LOCATION H.....ccouiiiiniriiiiirrenteteee st sssessee s essnsssesesessssosassonessnens
C. TOWEFISH.CPPcovioiinirieenrenreesreeniine rereeneesneaeraesaaesateasteasteassaansaenes 60
D. NAVH............. et re b e e e ae sttt aesate st be s reae s beesasaersaenbaeesaentae cveeaeenees 64
E. NAV.CPP......oiintinectetecreie et snes s enes eeveeneseraesransnaessesnaans 66
F. GPS H....ottttetcstntciets et s e er s e ss st es s s s s snsasnan 74
G. GPS.CPP.....ciiirestcete ettt ettt ss s sees s sess e s se st smsmssasns 75
H. INSH.oooiierienieieeree, et et ee et esae e ae st assrae st e e esbesasseeraaesaenren 76
L INS.CPP................... creesreentens cereeeernens veeeereerees eteesteeerae et e e et et e a e s aenras 78
L. SAMPLER H....cccuoiiiiirentietetee ettt et s ae s esssnesss s s se st sssssessnns 90
K. SAMPLER.CPP.....ccooirtirininiininieeeresretensesreevesssssesssessssossesssssosssoveseeneens 92
L. COMPASS H........... ceeeeeraensrenns reteeeeets e saaseraessraaans reereesressesssaetentaenressaessaaans 97
M. COMPASS.CPP.....ooottiieeeteeeeeeeertece et ssee e estesa e s stesssssssesessasseesseses 98
N. A2DH.....ccovvviviviennrannn et saet s vereeresenes reesveeserenaannes veeeene 104
0. A2DLCPP ..ottt ettt ettt st et e eneens 107
P. AZD.CFG ..ottt siete vt stas e s erere st s ses st e sessessssesessesssnssssasnassnen 125
APPENDIX B; : Serial Port Communications Source Code (CH+) .ovvvuvueeerenereereeennnns 127
A. GLOBALS.H....coooveeeereeceeeeeeeeeee
B. BUFFER.H..........cccovvviiieninreeeerecnnen
C. BUFFER.CPP.............ccuuu.... rereteeat e as st e tteeraaee b aessaesres veereeeraraaes e 129
D. GPSBUFF . H.......coitiiitiieinreteeeeretee e s eveveseesanes reerserennrereasnaans 131
E. GPSBUFFE.CPP........... ceeeesteesrrearesaeasaeeaaeas creeeseesstaesrteereenneraaas creeeneensnenns 132
F. PORTBANK H ...ttt et es s cses e e e 136
G. PORTBANKL.CPP.......ccorrrereceereerreeieseeens ettt ee st e e esaestss s e anenas 137
H. SERIALLH ...ttt et et ss st s v e enestenesaesesesssasassesen 138

viii

X

LIST OF FIGURES

2.1 Towfish Experimental Hardware Configurationcoceeeveveeveveecienecsenneneennen. 12
2.2 SANS and Towfish COMPONENLSccuevueerierirteneieteierceeeeeeeereete e eeeessees e sereresesessessas 13
2.3 SANS Software Objects and Data FIOWcvoveeeiereeeeeeeeeereereeeeeeeereeeeseeesess s 14
3.1 Systron-Donner IMU Sensor Noise CharaCteriSticsevveveeereererereerererersrssnsnnn. 19
3.2 Power Spectrum of ACCElETOMELEr SENSOTS..........veueueuirirererereieieeeeseeeeeseseeeseneeeseseesnens 20
3.3 Power Spectrum of Angular-rate SENSOTS.........eeeereriuiriiireciirireenenereseenesessessresessenns 21
3.4 Frequency Response of the Low-pass Filtercc.cuivevieeevieeieeeeeeeeeeeeeeeessssesssenenenns 21
3.5 Power Spectrum of the Filtered Accelerometer Sensor Qutput.............c.oveveeeenen... 22
3.6 Power Spectrum of the Filtered Angular-rate Sensor Output...........coeceevveeeerreemennnsn. 22
3.6 Sampled X-Angular Rate over a 4-Hour Period..........ccceveeeeeeeeeeeeeereereeereressesnerenn. 23
4.1 Block Diagram of the Redesigned SANS Hardware Configuration........................... 26
4.2 SANS Hardware COnfigUrationcceeueuieieieeneeieeieeeresereeeeeeeseeeeseeeseseessenesessasenes 27
4.3 E.S.P 486SLC DX2 50 MHZ COMPULETcoooverieeieeereeeereeeeeeeeeeeneeeeeeeeeeeseeseserensssenens 28
4.4 Systron-Donner Inertial Measuring UnIt..........ooeveeeivveevueeeeeeeeneeeeeeeeeseseessreessssenas 30
4.5 ONCORE GPS/DGPS RECEIVETcoveuiiriernrirererieieeeneceeesieeeseetssesereeeessesesesessessssens 31
4.6 The Double-Sided Low-Pass Filter PCB..........c.cc.coiviieiieeieiiieeeeeeeeeeeeeeeeeesesseeneenns 32
4.7 Schematic Diagram for One Channel of the Low-pass Filter Circuitry 32
4.8 DC-DC CONVETLET CITCULL wcevevcurmirerrrieieereesereritieseetesieseseseseesesoeessesesessssesensasessssssssens 33
5.1 SANS Software Objects and Data FIOWc.c.ccovuevueiveieieeenreeireeeeeeeeseeseeeseneeneesens 38
5.2 Model of the A2ZD SamPIE ATITAYcocierivierinierieteeieeese e ceeeeeeeteseeseeeseesessessse e essannas 41
6.1 SANS Navigation Filtercccoueevireriniiinireiinreee ettt et evetesse e e ees 44
6.2 45 Degree Pitch Excursion w/ K1=0, biasWght=.999, scale factor=4.1 45
6.3 Model of Rate Bias LOW-PaSS FIlterc.ccuiieuierieriiiiiieeecee oot eeeeeveeseneeeeanenns 45
6.4 45 Degree Pitch Excursion w/ K1=0, biasWght=.9999, scale factor=4.1 47
6.5 45 Degree Pitch Excursion w/ K1=0.1, biasWght=.9999, scale factor=4.1 48
6.6 45 Degree Pitch Excursion w/ K1=0.1, biasWght=.9999, scale factor=3.895........... 48
6.7 StatiC GPS Test RESUILSooveieirieieieireeeeeeeete et se st e e e e essese e e 49
6.8 ADPPATENt CUITENLccouiurrimiiereerieeeseetreeaesetnaseesse e s s sesesesessscssessssseseessonessseseresesasssenn 50

6.9 Static Heading Test Results

xi

LIST OF TABLES

1.1 Expected RMS GPS AccuraCy LEVELSccevnniniriirnniieeieiersciie e eeeveesas 6
3 .1 MotionPak Accelerometer Sensor SpecifiCationscoeeevvevvereeeveneeeeseeseeeessenas 18
3 .2 MotionPak Angular-rate Sensor Specificationsccceeeeeveeeerivevverenenrerieseerreeenees 18
4.1 ConnECOr J3 PINOUL ...coveoueuieireieiereeienteieieetieeerererereesvesrseecsseesessessessesessssesssensesssessens 29
4.2 MotionPak General Specificationscccoeuunne..... eetteeerrtae s teeeteesarasettesaaaenrbennrenas 31
4.3 Pinout of the Ribbon Cable and DB25 CONNECLOTSc.covvevevvverrenieeeeeeeeeeeevesnerennens 34
5.1 A2D DC-to-Digital Conversion Mappingcccceeceevevveerieeveniseeeseesveeseesesesonsssne 40

Xiii

Xiv

ACKNOWLEDGMENTS

This research was only made possible by the efforts of many people, which goes along with
something I learned as a boy growing up on our family farm, "Many hands make light work." Most
importantly, I would like to thank my wife Ann, and my children Christopher and Katherine. Each
day they cheerfully endured the many extended periods of my absence without complaint. The
work completed by this thesis would not have been as significant had I not had the peace of mind
in knowing my home and family were well taken care of. Thank you Ann.

Appreciation also goes to my friend, tutor, and source of advice, Ben Salerno who continually
stimulated my thinking with new perspectives on how to solve challenges encountered during this
research. Onmany occasions, Ben displayed much patience in explaining answers to my questions
only to get my "thousand yard stare" in return, and then gladly do it all over again. If it weren’t
for Ben’s pressing and mentoring, the low-pass filter and DC-DC converter Printed Circuit Board
built for this thesis, would not have come into existence.

A heartfelt thank you goes to Dr. Robert McGhee and Dr. Xiaoping Yun who served as co-
advisors on this thesis. Both helped in making this work an enjoyable and rewarding experience.
I particularly appreciated Dr. McGhee’s patience and understanding. When things looked like they
were becoming too lofty for me to accomplish, Dr McGhee would gracefully bring me back to
Earth with a small dose of reality. Ialso particularly appreciated Dr. Yun’s attention to detail and
timeliness when giving me feedback on my written work.

A heartfelt expression of gratitude goes to Eric Bachmann, LT/USN, who not only was the sec-
ond reader, but also assisted immensely in engineering the SANS software used in this thesis. It
was surely my good fortune to have the person who authored the prototype SANS software at the
software helm for my research.

A particular expression of gratitude goes to Russ Whalen. Thanks to Russ, I had a suitable,
secure, and comfortable place in which to conduct my research: his office. I would also like to
thank Russ for the valuable advice I received from him on all matters of thesis and life.

A special thank you goes to Dr. James Clynch, who like slashing a mighty sword through a stick
of butter, quickly solved my compass checksum check problem as easily as a 10-year old solves
the 2+2 problem.

This research was supported in part by Grant BCS-9306252 from the National Science Foun-
dation to the Naval Postgraduate School.

XV

xvi

DEDICATION

For Ann, Christopher, Katherine and Baby

xvil

Xviii

I. INTRODUCTION

A. BACKGROUND

An Autonomous Underwater Vehicle (AUV) can be capable of numerous missions both overt
and clandestine. Such vehicles have been used for inspection, mine countermeasures, survey,
observation, etc. [Yuh 95]. Recent research trends in underwater robotics have emphasized
minimizing the need for human interaction by increasing the autonomy of such vehicles.

The NPS ‘Phoenix’ AUV is an experimental vehicle designed primarily for research in support
of shallow-water mine countermeasures and coastal environmental monitoring [Healey 93, 95,
Brutzman 96]. In [Kwak 93], an approach is described for determining the position of submerged
detected objects by executing a “pop-up” maneuver to obtain a GPS fix, and then extrapolating this
fix backwards to the submerged object location using recorded inertial data. As explained in [Kwak
93], navigation accuracy during such a surfacing maneuver is strongly enhanced by the use of
accurate depth information available from low-cost pressure cells. However, this form of “aided”
inertial navigation [Brown 92], is not applicable to a surfaced AUV. Inertial navigation is not
needed in circumstances where continuous reliable reception of GPS satellite signals is possible.
However, this does not apply to AUVs, unless perhaps they are fitted with a mast to extend a GPS
antenna above the effects of wave action. Such a mast is not an attractive option for military
operations, and in any event may be mechanically difficult.

In efforts to overcome the problem of intermittent GPS satellite tracking for surfaced (or
cruising near the surface) AUV navigation, an experimental system, using a low-cost strapped-
down inertial measurement unit (IMU), has been designed to enable inertial navigation between
GPS fixes. This system is well suited for pop-up navigation, so finding a means of navigating near
the surface provides a complete solution to the overall navigation problem associated with
transiting an AUV to a shallow water work site, recording the position of detected submerged
objects, and then returning to a recovery site where stored mission data can be uploaded [McGhee
95].

Many of the missions of the Phoenix class of vehicles can be separated into two distinct
phases: transit and search. After being launched from an aircraft, submarine, or surface vessel, such

an AUV would conduct the transit phase of the mission in order to arrive at the search area. After

the search phase, the AUV would transit back to a recovery position. Neither of these transit phases
require as high a degree of navigation accuracy as the search phase. Once established in the mission
area, the Phoenix would enter the search phase which might include missions such as mine-
hunting, mapping, or environmental data collection. Typically, the search phase would require
more precise navigation which could be provided by more frequent GPS fixes or by using
Differential GPS (DGPS) or post-processing, if available. Both mission phases may involve
waypoint steering and obstacle avoidance.

One of the most important and difficult aspects of an AUV mission is navigation. It is
important that the navigation system be robust if the AUV is to be capable of a wide variety of
missions. In order to achieve such robustness, the AUV should be capable of navigating with the
Global Positioning System (GPS) and/or an Inertial Navigation System (INS). The GPS is capable
of highly accurate positioning when the AUV is surfaced, while an INS can be used for submerged
navigation. In order to ensure accurate navigation for the various missions, the GPS and INS
components can be combined. A favorable analysis of this type of navigation system was
conducted in [McKeon 92]. The hardware and software architecture required for a typical mapping
scenario was evaluated in [Norton 94]. '

[Bachmann 95] made the architecture evaluated in [Norton 94] a reality, and subsequently
developed the first working prototype of the proposed Shallow-water AUV Navigation System
(SANS). With the prototype SANS having achieved favorable results in open-water, at-sea test
trials, the research reported in this thesis advances the SANS to another level of maturity, making

it now ready for direct application to a real-world AUV,

B. RESEARCH QUESTIONS

This thesis will examine the following research topics:

- Evaluate the hardware and software architecture of the GPS/INS prototype SANS.

- Evaluate the feasibility of an AUV accurately navigating from point to point using GPS/INS
while conducting open-ocean transit.

- Develop a hardware configuration which will enable the GPS/INS SANS to be housed in

one small, self-contained package.

C. SCOPE, LIMITATIONS AND ASSUMPTIONS

This thesis reports the findings of the fifth year of research in an ongoing research project. The
scope of this thesis is to investigate the feasibility of an AUV navigating from point to point using
‘a combination of GPS/INS. The requirements for a SANS described by [Kwak 93] which impact
this project are:

- Low power consumption. Operation from an appropriately sized external battery pack for 12
hours is desirable.

- Limited exposure time. The amount of time that the GPS antenna is exposed in the search
phase should be as short as possible. Up to 30 seconds of exposure is allowed, but time between
exposures should be maximized.

- Maintain clandestine operation. The GPS antenna should present a very small cross section
when exposed and should not extend more than a few inches above the surface of the water.

- Maximize accuracy. During the search phase of the mission, system accuracy of 10 meters
or better is required with postprocessing, both submerged and surfaced.

- Total volume not to exceed 120 cubic inches. Elongated, streamlined packaging is preferred.

For the purposes of this research, DGPS will be used as ground truth data (without
postprocessing) for determining appropriate Kalman filter gains. However, some real-world
scenarios will only utilize the noncorrected GPS signal for real-time mission navigation and may

require further tuning of Kalman filter coefficients.

D. ORGANIZATION OF THESIS

The purpose of this thesis is to present the development of a system meeting the mission
requirements of the SANS. The term AUV is understood to include any small underwater vehicle
(including human divers) which can easily carry such a compact device. The term “towfish” refers
to the test vehicle (depicted in Figure 2.2) used to evaluate the SANS during at-sea testing.

Chapter II reviews previous work on this project as well as previous work on GPS navigation
and AUV submerged navigation.

Chapter III provides an evaluation of the prototype SANS in the form of both a time domain

and frequency domain analysis of the IMU sensor output signals.

Chapter IV is a detailed description of the hardware currently in use for this portion of the
project.

Chapter V is a detailed description of the software changes, additions, and updates made to
support this portion of the project. The chapter includes a description of the C++ code required for
future towfish experiments. This description provides an explanation of the class and object
hierarchy used, as well as an outline of the major functions that were added as a result of this
research.

Chapter VI is a description of the experiment design and analysis of the experimental results.

Chapter VII presents the thesis conclusions and provides recommendations for future

research.

II. SURVEY OF RELATED WORK

A. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) have the potential to be used in an efficient and
cost effective manner in a variety of missions involving military and non-military applications.
One of the most important aspects of an AUV mission is the ability to navigate accurately. Many
possible missions, such as mine-hunting, require a high degree of navigation accuracy. This chap-
ter will discuss some of the solutions for navigating an AUV.

In general there are two categories of navigation systems: those that are based on external
signals and those that are based on sensors. External-signal-based navigation systems such as,
Loran, Omega, and GPS are only able to determine position while the signal receiver is exposed
to the signal. Loran and Omega are relatively inaccurate compared to GPS. While Loran covers
almost the entire northern hemisphere, it has almost no coverage in the southern hemisphere
[Bowditch 84]. GPS on the other hand is capable of world-wide coverage with a high degree of
navigational accuracy.[Logsdon 92]

Sensor-based navigation can be implemented as a self-contained unit which can be composed
of various types of equipment such as IMUs, acoustic transponders, or geophysical map
comparison. Each of these components has its disadvantages. Acoustic transponders must be pre-
deployed at precisely known locations and may require costly maintenance. Geophysical map
interrogation requires a precise bottom contour map previously stored in the AUV’s computer.

IMU-based navigation is prone to sensor drift, which if left uncorrected, can become very large.

B. GPS NAVIGATION

The Navigation Satellite Timing and Ranging (NAVSTAR) Global Positioning System (GPS)
is a space-based radio positioning, navigation and time-transfer system sponsored by the U.S.
Department of Defense (DoD). It was originally intended to provide the military with precise nav-
igation and timing capabilities [Parkinson 80]. The system is designed to provide 24-hour, all-

weather navigation by providing total earth coverage using 24 satellites in 22,200 km orbits that

are inclined 55°, with 12 hour periods. The satellites broadcast two L-band frequencies: L1
(1575.4 MHz) and L2 (1227.6 MHz). Navigation and system data, predicted satellite position

(ephemeris) information, atmospheric propagation correction data, satellite clock error informa-

tion, and satellite health data are all superimposed on these two carrier frequencies [Logsdon 92,
Wooden 85].

There are two different navigation services available from the GPS satellites depending on the
type of receiver being used: the Standard Positioning Service (SPS) and the Precise Positioning
Service (PPS). The SPS is achieved by receiving the L1 carrier signal which is broadcast with an
intentional inaccuracy called Selective Availability (SA). SA limits world-wide navigation to 100
m horizontal accuracy with a 95% confidence level [Logsdon 92]. The PPS is limited to U.S. and
allied military, and specific non-military uses that are in the national interest. Access to PPS is
restricted by use of special cryptographic equipment. PPS provides the highest stand alone
accuracy: 15 m Spherical Error Probable (SEP), a velocity accuracy of 0.1 m/sec, and a timing
accuracy of better than 100 nanoseconds [Logsdon 92, Wooden 85].

In order to take full advantage of GPS precision without having access to cryptographic
equipment, civilian customers have determined a way to improve the accuracy of the SPS. The
most common way to work around the inaccuracies of the SPS is Differential GPS (DGPS), which
may be used in real-time or during post-processing. DGPS is a method which allows highly
accurate information to be obtained from GPS without the cryptographic equipment required for
access to the P-code of PPS. The idea behind DGPS is to survey a receiver at a stationary site, allow
the stationary site to determine the difference between its actual position and its GPS position, and
broadcast the pseudorange corrections to any DGPS capable receivers. Real-time differential
processing can reduce the typical 100 m accuracy of the SPS to 2-4 m regardless of the status of
SA [Logsdon 92]. In the case of post-processing, it is possible to have the AUV record the raw PPS
or SPS GPS information for later comparison to a known geographical site. Precise post-
processing procedures can be used to reconstruct extremely accurate positioning information,

typically in the submeter range. Table 1 shows a comparison of expected GPS accuracies.

POSITIONING SERVICE PPS (m) SPS (m)
Non-Differential 16 100
Differential 2-4 24

Table 1: Expected RMS GPS accuracy levels [Logsdon 92]

As GPS technology has matured, the size and cost of GPS receivers has decreased drastically.
Not only is miniaturization improving, but GPS receivers have maintained or increased in
performance capability. Since as early as 1992, the GPS industry has been able to produce
receivers that are essentially a single printed circuit board. [Souen 92] reports that the Furuno GPS
receiver module LGN-72 is an eight-channel receiver implemented on a single printed circuit
board measuring 100 mm x 70 mm x 20 mm and requiring only 2 W of power.

There is currently however, a performance trade-off associated with the miniaturization of
GPS receivers. Trimble currently offers the PC Card 110 GPS receiver in the form of a Personal
Memory Card International (PCMCIA) interface. This credit card sized device simply slides into
any laptop, most palmtops, or pen-based computer compliant with PCMCIA (release 2.0). This
miniature GPS receiver is capable of tracking eight satellites using three channels. However,
because it does not have an allocated channel for each of the eight satellites it’s capable of tracking,
it does not use a continuous tracking scheme, which degrades its acquisition time performance. In
order to reduce the size of the receiver, manufacturers are reducing the number of channels on the
receiver. In this configuration, GPS receivers are called “sequencing” receivers [Logsdon 92].
Sequencing receivers utilize a time-sharing technique to “dwell” on each satellite for a brief
interval before switching to the next satellite in the sequence. Sequencing receivers have a typical
acquisition time of about 2 minutes. Continuous tracking GPS receivers have a typical acquisition
time of about 30 seconds, however, they are less compact in size as they have more receiver
channels. Given this trade-off relationship between size and performance, the choice of GPS
receiver must be made with the particular application in mind. If the application is not so dynamic
(i.e., mobile navigation), a sequencing receiver would offer an adequate compromise. However,
if the application requires a short time to initial acquisition, the most viable option is the continuous
tracking receiver.

Given the level of miniaturization and performance along with its excellent accuracy, GPS is
an obvious choice for AUV navigation. One manner of using GPS to locate an AUV is to place
buoys with GPS receivers at appropriate locations. These buoys would translate the GPS signal and
retransmit an underwater acoustic signal. The AUV would determine its position via ranging and
position fixes to the buoys. [Youngberg 91] suggests that the GPS antenna, receiver, processing
and control subsystem, acoustic transmitter, battery power, and homing beacon could all be

contained in a buoy measuring 123 mm diameter x 910 mm long and weighing 5-15 kg. A

simulation which showed the feasibility of this approach is presented in [Leu 93]. The simulation
consisted of several sonobuoys spaced. one kilometer apart. Due to uncertainties in buoy position
caused by wave action and variations in altitude, the study proposed the use of Kalman filtering
techniques to combine the outputs of an accelerometer and DGPS to enhance accuracy. Each GPS
buoy would essentially act as a GPS satellite and broadcast its position via spread spectrum signals
used by the AUV for ranging. This technique would eliminate the requirement to predeploy a
surveyed transponder field.

Another possible method for using GPS to determine the AUV’s position is to physically
mount the GPS antenna and receiver onboard the AUV. One major concern would be that the GPS
receiver would be unable to acquire satellites in a timely manner suitable to the mission due to
splash effects on the antenna. [Norton 94] describes both static and dynamic test results which
show that a submersible system is able to meet the accuracy and time requirements of the mission

while being splashed by wave wash.

C. INERTIAL NAVIGATION

Inertial navigation is basically a complex method of dead reckoning. In its purest form it
involves no outside references to fix position. All position data is calculated relative to a known
starting point. An inertial navigation system (INS) continuously measures three mutually orthog-
onal acceleration components using accelerometers. These measurements are taken in short time
increments and multiplied by elapsed time in order to determine an estimate of instantaneous
velocity. The three-dimensional change in position can then be determined by integrating respec-
tive velocities over time. [Bachmann 95]

The primary drawback of any INS is the tendency for small sensor drift rates to accumulate
errors over time. Without outside references for correction, these errors grow relentlessly and
eventually lead to large errors in the estimated position. Highly accurate inertial navigation
systems can be constructed, but they are large, costly, and complex [Tuohy 93]. Size alone makes
them unacceptable candidates for the SANS. In order to meet the SANS requirements, a low-cost
INS can be integrated with GPS. GPS will provide the INS with the periodic position fixes
necessary to correct slowly building INS errors.

The acceleration measurements required by an INS can be made by several types of IMUs.

These can be divided into two fundamental categories: gimbaled and strapdown. Due to their large

size and power requirements, gimbaled systems are not suitable for the SANS. In a strapdown unit,
three mutually orthogonal accelerometers and three angular rate sensors are mounted parallel to
the three body axes of the vehicle. Changes in linear and rotational velocities are continuously
measured. Strapdown systems are smaller and simpler than gimbaled systems, but necessitate

much larger computational capabilities [Logsdon 92].

D. INTEGRATED GPS/INS NAVIGATION

SPS could be used to adequately perform both the transit and search phases of an AUV mis-
sion. During the transit phases, non-differential SPS and a magnetic compass would provide the
primary source of navigation data. In order to utilize GPS as a meaningful correction to a low-cost
INS system, periods between fixes during the transit phase must not exceed the time in which an
AUV could travel a distance greater than the horizontal accuracy of SPS (100m). The mapping
phases of an AUV mission would require the vehicle to maintain more accurate navigational pic-
ture both submerged and on the surface. This would necessitate the use of periodic differentially
corrected GPS information in order to keep the INS system accurate while submerged. This dif-
ferential correction could be provided in real-time during overt missions along friendly shores,
provided a DGPS reference signal is available, or during mission post-processing following a
clandestine mission.

Integration of GPS and INS into a single system can produce continuously accurate
navigational information even when using relatively low-cost components. This integration not
only allows periodic reinstallation of the INS to correct accumulated errors but can also (with the
aid of Kalman filtering techniques) improve the performance of the INS between fixes. Filtering
the acceleration data with additional sensor information such as water speed and heading will
further improve the quality of the integrated system. Overall, an integrated system will provide
improved reliability, smaller navigation errors and superior survivability [Logsdon 92].

Kalman filtering is a method of combining all available sensor data regardless of their
precision to estimate the current posture of a vehicle [Cox 90]. The filter is actually a data-
processing algorithm which minimizes the error of this estimate statistically using currently
available sensor data and prior knowledge of system characteristics. Each piece of data is weighted
based upon the expected accuracy of the measurement it represents. In a complementary filter,

low-frequency data, which is trusted over the long term, and high-frequency data, which is trusted

only in the short term, are used to “complement” each other providing a much better estimate than
either can alone [Brown 92].

[Bachmann 95] demonstrated the use of this complementary filter technique by combining the
low-frequency data of the accelerometers and compass with high-frequency angular rate and
heading information. Intermediate position results were obtained by integrating high-frequency
water-speed data. GPS data was used to reinitialize the system each time a fix was obtained and
develop an error bias, expressed as an apparent current, to correct the system between fixes. The
concept of using the relatively inexpensive IMU with limited accuracy coupled with differentially-
corrected GPS has proven to be a viable solution to the challenge of shallow-water AUV

navigation [Bachmann 95].

E. AUV SUBMERGED NAVIGATION

There are many techniques available for submerged navigation, including dead reckoning,
inertial, electromagnetic and acoustic navigation. With acoustic navigation, time of arrival and
direction of propagation of acoustic waves are the two principal measurements made. A wide
variety of acoustic navigation systems have been developed for underwater vehicle use. They are
typically divided into long, short, and ultrashort baseline systems (LBL, SBL, and USBL). All
involve the use of an array of acoustic beacons or receivers whose positions must be known to an
accuracy better than the desired vehicle localization accuracy [Tuohy 93]. Unfortunately, most
acoustic navigation systems require major expeditions for their accurate set-up and periodic main-
tenance. This makes them expensive and in many ways reduces the level of autonomy achievable
by an AUV. Also, acoustic navigation methods are affected by changes in the speed of sound in
the ocean and suffer from refraction and multipath propagation problems in restricted shallow
water coastal and ice-covered areas [Tuohy 93].

There are various other ways of determining a vehicle’s velocity and position while
submerged without the aid of external signals. An AUV could use Doppler sonar to determine
velocity. Charge Coupled Device (CCD) cameras, laser scanning, or variations in the earth’s
magnetic field can also aid in determining position [Bergem 93]. Position could also be estimated
by the double integration of acceleration as sensed by an Inertial Measurement Unit (IMU).

Unless an AUV has access to outside references, it will not be able to refer to external signals

while submerged. If this is the case, then the system must rely on some sort of dead reckoning.

10

Modern dead reckoning systems typically use magnetic or gyroscopic heading sensors and a
bottom or water-locked velocity sensor [Grose 92]. The main problem is that the presence of an
ocean current will add a velocity component to the vehicle which is not detected by the speed log.
In the vicinity of the shore, ocean currents can exceed two knots [Tuohy 93]. Using dead reckoning
with currents which are relatively large in relation to the typical 4-6 knot speed of an AUV can
produce extremely inaccurate results [Tuohy 93].

There are many techniques for measuring accelerations and angular rates. These include using
ring laser and fiber optic gyros, rotating mass gyros, vibratory rate sensors, and high performance
IMUs. Inertial grade IMUs typically contain three angular rate sensors, three precision linear
accelerometers and a three-axis magnetometer. The acceleration measurements required by an
Inertial Navigation System (INS) can be made by several types of IMUs. Again, these can be
divided into two fundamental categories: gimbaled and strapdown. All of these sensors are subject
to drift errors which relentlessly increase with time. High quality sensors are subject to less drift
but can cost up to $100,000 [Tuohy 93], making them unattractive for small AUVs.

[McKeon 92] proposes a combination of GPS and INS to allow an AUV to determine position
information. While submerged, the AUV uses a low-cost inertial navigation system. However,
when on the surface the vehicle has access to GPS information. GPS/INS information could be
combined with a Kalman filter techniques to reduce the errors during the next dive sequence as

simulated in [Nagengast 92] and demonstrated in [McGhee 95].

F. THE PREVIOUS PROTOTYPE

[Bachmann 95] describes in detail the previous hardware and software configurations of the
SANS. For the benefit of the reader, Figures 2.1, 2.2, and 2.3 are given again in this thesis to aid
in discussing the previous prototype. Figure 2.1 shows a block diagram of the hardware assem-
bled for at-sea testing of the SANS system. As seen in Figure 2.1, the system relied on an exter-
nal 386 computer for processing sensor data, a modem connection for transmitting data packets to
the towing vessel, and a coax cable to receive GPS data from the towed vehicle GPS antenna. The
output of the A/D converter was being fed to the data-logging computer via an RS-232 connec-
tion, and the GPS and DGPS receivers were physically located on the towing vessel. The hard-
ware configuration for this research has been changed considerably, and will be presented in a

subsequent chapter.

11

GPS MAGNETIC ‘g’ﬁégg
ANTENNA COMPASS IMU

SENSOR

Y Y

|

|

|

|

|

|

|

A/D voltages to 12 bit binary|

|

|

* RS-232 ,

DATA '

LOGGING '

COMPUTER :

{ RS-232 !

|

MODEM binary to ascii :

L e e e e e e e e . T T T T e e e e A
COAX ANALOG TOW FISH

TOWING VESSEL

r—-"—"-1—-—"—"—*—= "7/ — — 7/ =/ epe——————— e a— o — - |

MODEM :

|

l RS-232 |

RS-232 :

Gps [> |

RECEIVER

TERMINAL :

NODE l

CONTROLLER 1

t AUDIO |

|

DIFFERENTIAL |

RADIO :

Figure 2.1: Towfish Experiment Hardware Configuration
[Bachmann 95]

12

Shipboard Unit

GPS Revr

Differential Rcvr

TNC

>

Lower fin
to house
Depth & Speed

3.5 —>
GPS Antenna
(waterproofed)
TOWFISH
Electronics Tray
Depth Speed Modem Motion 10 Hz Tattletail Compass

sensor sensor

Pak filter
(IMU)

13

data logger

Figure 2.2: SANS and Towfish Components [Bachmann 95]

MAIN
Position
Valid
Polgtslon GPS gosition
> mesSsages
NAVIGATOR |
{ GPS
Position
INS
Heading, speed, linear
T ecoiZrations an GPS
angular rates
GPS 5position
SAMPLER messages
GPS
Data packets BUFFER
Feglion
Eﬁg}é‘gg characters
YR
T Djta pagket PORT
BUFFERED
SERIAL
PORT

Figure 2.3: SANS Software Objects and Data Flow [Bachmann 95]

Figure 2.2 presents a photograph of the major components of the previous prototype. Figure
2.3 shows the SANS (as previously configured) software objects and the types of data passed from
one to another. In its current configuration, the INS object no longer receives data from the
sampler object, but rather from processor registers. Again, changes to the SANS software

configuration will be presented in more detail in a subsequent chapter of this thesis.

14

G. SUMMARY

The above survey has shown that there are many ways to overcome the challenges associated
with AUV navigation. The choices range from simple dead reckoning to systems which use
acoustic information from floating or stationary transponders, to complex systems which use
sophisticated IMUs and GPS receivers combined with Kalman filtering techniques.

Many AUV missions could be accomplished using an integrated navigation system combining
GPS and INS. Similar systems in other applications have been demonstrated to have superior GPS
signal acquisition and reacquisition performance whenever loss of lock occurs. This results in
improved survivability in hostile environments and smaller navigation errors. This research
continues an ongoing experimental study pertaining to the development of such a system and the
associated problems. The current system under evaluation is of small physical size and relatively
low cost. The IMU selected is representative and has limited accuracy, so additional water-speed
and magnetic heading information is required. This means that accelerometers are used mainly to
derive low frequency attitude information, and are not utilized for velocity or position estimation
over long periods.

The availability of differential GPS in open-ocean tests in Monterey Bay will allow the
experimental choice of navigation filter gains to accurately assess overall system performance in
a variety of sea states and for various operational scenarios. Previous research on the prototype
SANS has produced test results and qualitative error estimates which indicate that submerged
navigation accuracy comparable to GPS surface navigation is attainable. The research goal of this
thesis is to refine the error estimates and the hardware configuration to allow more prolonged
submerged navigation, and develop the SANS into a self contained system capable of being

internally or externally attached to any AUV and delivering regular, accurate position updates.

15

16

IIL. EVALUATION OF THE PROTOTYPE SANS HARDWARE

A. INTRODUCTION

At the heart of the prototype SANS are the GPS receiver, the IMU, and other sensor devices.
The GPS receiver, compass, and water speed sensor have not, up to this point in the course of this
research, presented any serious problems in accuracy or dependability. However, the IMU out-
puts, after being fed through signal processing and conditioning circuitry, are suspected sources of
navigation inaccuracies [Bachmann 95].

This chapter does not provide any evaluation of the GPS/DGPS receivers, water speed sensor,
or compass since there is no apparent major error contributions from these devices. It does, how-
ever, provide an investigation into what noise is present in the real-world Systron-Donner
MotionPak IMU. It also provides an evaluation of the low-pass filtering and conditioning cir-

cuitry. Finally, it presents an evaluation summary of the prototype SANS hardware.

B. NOISE CHARACTERISTICS OF THE MOTIONPAK INERTIAL SENSORS UNIT

The Systron-Donner Model MP-GCCCQAAB-100 “MotionPak” inertial sensor unit consists
of a cluster of three accelerometers and three “Gyrochip” angular rate sensors. The accelerome-
ter specifications are shown in Table 3.1. The angular-rate sensor specifications are given in Table
3.2

With the IMU placed on a stable test bench, polariod photographs were taken of an oscillo-
scope screen display of each sensor output. Figure 3.1 depicts the respective noise characteristics
in each of the IMU sensor outputs. This analysis gives hints there is broadband, “white” noise in
the accelerometer sensors, while there is a 275 Hz sinusoidal signal present in the angular-rate
sensors. Figures 3.2 and 3.3 depict the results of a power spectrum analysis of the accelerometer
and angular-rate sensor outputs. Figure 3.2 shows the power spectrum between 8 Hz and 100
KHz as well as between 8 Hz and 50 Hz. The spectrum analyzer used for these tests has its own
power spectrum which was sufficiently below the sensor signals by 8 Hz. Thus 8 Hz was chosen
as the start frequency. As these plots show, with a reference level of -20 dB (the reference level is
depicted as the top-most horizontal index line), and using the value of 10 db/Div, the signal has a
maximum value of -60 dB below 50 Hz. The signal energy drops off above this point and

becomes relatively flat in the vicinity of 100 KHz. Figure 3.2 shows that the noise in the acceler-

17

Parameter Unit X-axis y-axis z-axis
Range g 1 1 2
Scale Factor V/g 7.469 7.478 3.727
Scale Factor Temp. %/deg C 0.001 -0.002 -0.001
Coefficient
Bias mg -2.447 4.570 -0.586
Bias Temp. Coefficient W g/deg C -47 -66 -48
Sensitivity ng 10 10 10
Bandwidth Hz 797 757 901
Output Impedance Ohms 2464 2494 1177

Table 3.1: MotionPak Accelerometer Sensor Specifications [Systron-Donner 94]

Parameter Unit X-axis y-axis z-axis
Range deg/sec 50 50 50
Scale Factor mV/deg/sec | 50.151 49.906 50.242
Scale Factor Temp. %/deg C 0.03 0.03 0.03
Coefficient
Bias deg/sec -0.06 0.23 0.23
Bias Temp. Coefficient | deg/sec P-P | 3 3 3
Sensitivity deg/sec 0.002 0.002 0.002
Alignment degrees 0.26 0.41 0.34
Noise deg/sec/JHz 0.008 0.009 0.008
Bandwidth (to -90 deg | Hz 70 71 71

phase)

Table 3.2: MotionPak Angular-Rate Sensor Specifications [Systron-Donner 94]

18

Al 360 mu?] 33 DmU 900 my?

X-accelerometer X-angular-rate

300 my? 900 mu?

Y-accelerometer Y-angular-rate

At a3 v? aun 3.6 5 v

900 my?

......

Z-accelerometer

Z- angular-rate

Figure 3.1: Systron-Donner IMU Sensor Noise Characteristics

19

ometers is in fact broadband white noise, since it shows a power spectrum with energy across a
wide range of frequencies. The white noise is most likely thermal and low-level EMI noise. Fig-
ure 3.3 shows there is more “color” in the angular-rate sensor noise. Mainly, there appears to be
harmonic noise between 1.5 KHz and 300 KHz and several high-power noise peaks at 100, 200,
and 275 Hz. The peak at 275 Hz is most likely harmonic noise from the fundamental tuning-fork
in the rate sensors. [Matthews 95] describes an investigation of signal noise in this same Systron-
Donner MotionPak IMU. [Matthews 95] found a strong peak at 275 Hz, and attributed this noise
to the internal tuning-fork oscillator in the sensor itself.

The accelerometer sensor outputs depicted in Figure 3.1 show a DC bias of -21 mV and 125
mV respectively. These DC biases are most likely caused by a combination of electronic sensor
bias and slight tilts in the test bench surface. For the purpose of this evaluation, these DC biases
are ignored. Furthermore, the software as described in [Bachmann 95], uses bias correction fac-

tors that essentially negate any sensor bias affects on navigation accuracy.

=200 g aggrga 56 10%.% Hr . 2900 4B KANKER 2§ | S
BIY AMNGE ~1¥.0 48s ,~m.4 em s K * ANSE =130 488 *56-? dbe

FEART B0 Wz . KR -X 1] TaK1 8.9 %2
© RER Q8 BE .4 S i a K kRN 2 Az vEd 10 Hz

Figure 3.2: Power Spectrum of Accelerometer Sensors

20

REF =35.0 dBa RARKER Z3 $9%.5 24 432 RARKER 38841
10 dBRIY RENLE ~20.0 Afs 393 4fie Ly R Reg ~i§ @ ds :

I S S : O S S S Code ..
iRy 8. By , ¥R 200 Q00,8 | ATART 3.0 M2
RBd 30§ He YBH 3 KHz gt 2.4 BEC K& 4B ux W% 3D Hx

33 £.9 SEf

Figure 3.3: Power Spectrum of Angular-rate Sensors

C. THE SIGNAL PROCCESSING AND CONDITIONING CIRCUITRY

The signal processing and conditioning circuitry, described in detail in [Schubert 95], low-pass
filters the IMU outputs at a cutoff frequency of 10 Hz using an active, anti-aliasing, two-pole
Sallen-Key Bessel filter design. This circuit further converts the dual-ended output swing of the
IMU to a single-ended 0-5 volts.

Figure 3.4 depicts the frequency response of the low-pass filter. Generally, this analysis con-
firms that the -3dB frequency is about where it’s supposed to be, and the response does in fact
rolloff at the expected -40dB/decade.

REE =R 4Dw %ﬁﬁfﬁ‘k RYEG U3 REF 308 dBn HRRXER AMY«R
G 48938 ﬁﬂ)l:&g ~§4,¢ I8 i3 dBIEY RRRCE

Z
30.0 Ak» ~6%od dBH

; R T O T R D
SraRy 9wz SILF 2GR.¢ B
B3y L0 BF ¥3¥ §% My 3T &«B 8T

SYREY .U He Y5 7 DOBeE WE
) &";rsu 30 Mz yalk 100 A ”cv 4.5 TEC

Figure 3.4: Frequency Response of the Low-pass Filter

21

For the SANS application, in order for any sensor noise to not degrade the accuracy or resolu-
tion of the measured signal, the energy in the filtered signal above 10 Hz must be attenuated down

below:

2Olog%2 = —72dB
2

As seen in Figure 3.4, the low-pass filter is not successfully able to attenuate signal noise
energy in the stop-band below approximately 1 KHz (the center horizontal index line is at -70
dB). The results of this filter short-fall can be seen by looking at the power spectrum of the accel-
erometer and angular-rate sensor outputs after low-pass filtering. Figure 3.5 and Figure 3.6 depict
the power spectrum of the filtered accelerometer and angular-rate sensors respectively.
REF ~EG .0 482 RATKER 343 Bz REF =26.0 aB%

3G ABIDIW KARGE ~18.0 &8»n ~$3.6 8%) 15 SBID1Y RABSE
o PRI .o sen e ey

,:.,.gﬁ
STOP 0% 2 COBY0R 304 R
BT §2.8 Ezc ¢ § ' &T 37,8 5EG

HERRER O BEL-B Hx REF ~3%.% 488 NARKER 274,38 Hi
D Akn ©8§: 9 3B ‘ 15 43001 BRUSE «20.8 d48s =313 dBw
[: ' " ru.-::,v-‘:u“:.,‘ e . L

- - A S SL I
REQ 34D By ¥BH 3 Kz REY 18 Hz VEH 30 My

ErRET zo.g wy

Figure 3.6: Power Spectrum of the Filtered Angular-rate Sensor Output

22

This short-fall is more apparent in the angular-rate sensor outputs than those of the filtered
accelerometer outputs. The low-pass filter appears to be doing an acceptable job in attenuating
the noise energy in the accelerometers. However, the low-pass filter is not fully attenuating the
noise energy in the angular-rate sensors to a level below the resolution of the least significant bit
(LSB). Specifically, there are noise peaks at 30, 100, and 275 Hz that reach -60dB. Clearly, these
high energy noise peaks are affecting the LSB. By noticing that these noise peaks represent a

12dB over-power above the required noise floor, and solving the following equation for N:

2010g—1W = -12dB
2
N = 1.99

it’s apparent that this noise energy is actually affecting the two least significant bits of the mea-
sured angular-rate signal.

During system development, it was discovered that the x-angular-rate signal being input to the
A/D had apparent slow growth behavior. Figure 3.7 shows the results of sampling the x-angular-

rate sensor once every 60 seconds for a period of 4 hours after starting the SANS from an initially

“cold” state.
2605 T T T T T T T
"coolydat" 2
R QKPP LN by &
O G LWL EIING> & &
2800 | ud ST AEIBBEIHA A D -
DR By ORNLP e > D
L i]
LR DIIIYR
AP >
2595 | o J
-5
S
-
7~ -®
Qo830 L -]
N R
N y
.- »
&n I
A 2585 | o« _
e s
m <
: 2>
o
= 2580 | o+ 4
&
4
2575 | 4
.
-
2570 1 1 '} 1 1 L 1
0 2000 4000 6000 8000 10000 12000 14000 16000

Seconds
Figure 3.7: Sampled X-Angular-Rate Over a 4-Hour Period

23

The system hardware configuration used to collect the data shown in Figure 3.7 included the
the LPF circuitry described in [Bachmann 95]. This growth in the signal turned out to be a signif-
icant discovery possibly explaining some of the inaccuracy the SANS had been experiencing dur-
ing previous testing. It was at first decided that this growth was due to heating effects in the IMU.
However, after replacing the LPF circuitry with a newly designed circuit using commercially pro-
vided filters (this new filter circuit is described later in Chapter IV), the problem went away.
Therefore, the growth error in the x-angular-rate signal was attributed to heating effects on the cir-
cuit components conditioning the x-angular-rate signal in the LPF circuitry used in the prototype
SANS.

D. SUMMARY

This analysis lends further explanation to the results obtained in [McGhee 95], which shows
the angular-rate output fluctuating as much as 4.88 mV; the three least significant bits of the 12-bit
measured signal. Some of this fluctuation could be attributed to any of the causes stated in
[McGhee 95], but this analysis gives qualitative evidence that the two least significant bits of the

measured angular-rate data were in error due to sensor noise.

24

IV. SYSTEM HARDWARE CONFIGURATION

A. INTRODUCTION

Figure 4.1 presents a block diagram for the hardware making up the redesigned SANS. Figure
4.2 presents a photograph of the SANS components fully assembled into their testing configura-
tion. The project box in which the components are currently mounted is not intended to be the
final resting place for these components. A more permanent, water-tight, streamlined housing is
currently in development. In fact, by using this particular off-the-shelf project box, and by itera-
tively installing, testing, changing, and then reinstalling the components, an optimum space-effi-
cient configuration has been achieved, which, in turn, has driven the design of the final housing.

This configuration is significantly different from that presented in [Bachmann 95] for the pre-
vious prototype. Mainly, the SANS components are no longer separated; all its components are
physically located in one, self-contained package. In fact, when joined with its accompanying
power source (a 12 VDC battery), it is capable of being strapped-down to a testing turntable, or
inserted into the towfish (with slight towfish modifications) described in [Bachmann 95]. In its
current configuration, the SANS has its processor and GPS/DGPS components “onboard,” thus
no longer requiring the transfer of sensor data via modem to an external processor or GPS/DGPS
receiver as was shown in [Bachmann 95]. In order to maintain the ability for human monitoring
and interaction during the course of an experiment, the SANS’s processor is linked with an exter-
nal processor via a DOS TCP/IP network environment. This external processor’s only function is
to maintain a remote control session with the SANS processor and receive its attitude and position
updates. Contrary to the original SANS proof of concept design presented in [Bachmann 95], the
SANS now maintains the capability to on-board-process its own data in order to maintain its gen-
eral capability to interface with any other higher-level processor (via a network), regardless of the

application.

B. HARDWARE DESCRIPTION

1. Computer
The on-board processor is an Extremely Small Package (E.S.P.) Cyrix 486SLC DX2 50 MHz

computer. This computer, pictured in Figure 4.3, is specifically designed to offer off-the-shelf

PC-compatible solutions in space and/or power constrained environments. Together, the E.S.P.

25

12VDC Battery In

-

DC-DC Regulator
DC Out &
— Distribution
Block
———
. —
——
MU [o]
g | 12-bit A/D|
—
Water
—» Speed
Sensor
Depth
Sensor
-

COM 1

GPS/DGPS
T¥— Receivers

COM 2

Compass

Network Adapter

Attitude and Position Out
-

Network w/ Remote PC
Remote PC used during
development only

Figure 4.1: Block Diagram of the Redesigned SANS Hardware Configuration

Processor Module and its accompanying modules provide a small, low-power system that does
not sacrifice system performance compared to a standard, desk-top type system [MAXUS 95].

This particular E.S.P computer possesses a total of eight modules which perform various system

tasks. A brief description of the tasks these various modules perform in the SANS is as follows:

a. 486SLC DX2 CPU Module
Besides providing the processing capability, the CPU Module provides the interface for a

standard keyboard, the Flash PROM containing the system BIOS, and memory and bus controller

logic [MAXUS 95].

26

Project Box Cover

DGPS Antenna (tuned 466.7625 MHz)

CJ
L]
—
L
12VDC1In GPS Antenna COM 1

Low-Pass Filter Board

GPS/DGPS
Interface

DGPS Receiver

486 DX2 50MHz
E.S.P. Computer

AUI-BNC GPS Receiver

Thin Ethernet

Compass -t

Figure 4.2: SANS Hardware Configuration

27

Figure 4.3: E.S.P. 486SLC DX2 50 MHz Computer

b. DC-DC Power Module

Provides for all the system power requirements up to a maximum 35W total output. It
accepts an unregulated 12 VDC and provides the required +5, +12, -12, and -28 VDC to power
various system components and optional peripherals (i.e., external floppy/hard drive). [MAXUS
95]

¢. VGA Adapter Module

Provides the interface to operate an external VGA monitor.

d. PC /O Module

Provides for 2-Serial ports and 1-Parallel I/O port.

e. PCMCIA Module

Provides two type-III PCMCIA sockets which conform to PCMCIA Release 2.01 standard
[MAXUS 95]. These two ports can be used for a variety of compatible devices (i.e., Ethernet
Adapter, Modem, GPS Receiver, etc.). For instance, this module can accept SRAM cards which
can contain bootable system files or simply be used to provide storage media. This module was
included in the current design to provide additional secondary storage in the form of PCMCIA

SRAM cards, as well as to enable future expandability.

28

f. Ethernet Module

Provides the SANS with an external ethernet interface.

g. Analog to Digital (A/D) Module

Provides 8 differential or 16 single-ended input channels at 12-bit resolution. It features a
single-channel maximum sampling rate of 333 KHz, and an input range from +/- 1.25mV to +/-
10V [MAXUS 95]. The A/D module provides a 34-pin external connector (J3) to which develop-
ers can connect their input signals. In its current configuration, the A/D module samples only 8 of

the available 16 single-ended channels. Table 4.1 shows the current pinout of connector J3 on

the A/D connector board.

Signal Pin Pin Signal
GND 1 2 GND
GND 3 4 IN_8B unused
GND 5 6 IN_8A depth
GND 7 8 IN_7B unused
GND 9 10 IN_7A water speed
GND 11 12 IN_6B unused
GND 13 14 IN_6A z-axis angular-rate
GND 15 16 IN_5B unused
GND 17 18 IN_5A y-axis angular-rate
GND 19 20 IN_4B unused
GND 21 22 IN_4A x-axis angular-rate
GND 23 24 IN_3B unused
GND 25 26 IN_3A z-axis acceleration
GND 27 28 IN_2B unused
GND 29 30 IN_2A y-axis acceleration
GND 31 32 IN_1B unused
GND 33 34 IN_1A x-axis acceleration

Table 4.1: Connector J3 Pinout

29

h. DRAM Module
Provides for high-speed (70ns) memory storage available in 2, 4, 6, 8,or I6MB capacities
[MAXUS 95]. This module is to the E.S.P. as a hard disk is to a standard desk-top PC.

2. Inertial Measuring Unit

The inertial navigation component of the SANS is provided by a Systron-Donner Model MP-
GCCCQAAB-100 “MotionPak” inertial sensing unit, pictured in Figure 4.4. This self-contained
unit provides analog measurements in three orthogonal axes of both acceleration and angular
velocity. It consists of a cluster of three accelerometers and three “Gyrochip” angular rate sen-
sors. General specifications are shown in Table 4.1. Accelerometer specifications and angular rate

specifications are shown in Table 3.1 and Table 3.2 respectively.

Figure 4.4: Systron-Donner Inertial Measuring Unit [Bachmann 95]

30

Parameter Units . Range
Input Voltage DC Volts +15, -15
Input Current Amps +0.246, -0.196
Temp. Range degrees C -40, 80
Weight grams 912
Temp. Sensor pA/deg k 1.0

Table 4.2: MotionPak General Specifications [Sytron-Donner 94]
3. GPS/DGPS Receiver Pair

The GPS/DGPS receiver used is the ONCORE 8-channel receiver which incorporates an
imbedded DGPS capability [Oncore 95]. The receiver is capable of tracking up to eight satellites
simultaneously. It can provide position accuracy of better than 25 meters Spherical Error Proba-
ble (SEP) without Selective Availability (SA) and 100 meters (SEP) with SA. Typical Time-To-
First-Fix (TTFF) is 18 seconds with a typical reacquisition time of 2.5 seconds [Oncore 95]. This
receiver meets or exceeds the capabilities of the receiver described in [Norton 94], which demon-
strated that under normal operating conditions, a receiver of this kind, is capable of meeting the
accuracy and time requirements of the SANS project. [Norton 94] also demonstrated that a
receiver with these qualities will perform well when using an antenna that is located on or near the
sea surface as is necessary during a clandestine mission. Figure 4.5 shows the ONCORE GPS/

DGPS receiver used in the SANS project.

Figure 4.5: ONCORE GPS/DGPS Receiver

31

4. Low-Pass Filters

Based on the analysis given in Chapter III, the 2-pole Bessel filters were replaced with new fil-
ters which offer a faster “rolloff” in the stopband (now 80 dB/Dec). Each of the six IMU outputs
is filtered by a 4-Pole, active, anti-aliasing low-pass Butterworth filter with a bandwidth of 10 Hz.
The low-pass filters are model DP74 and are packaged in a standard 16-pin dual in-line package
(DIP) [Frequency Devices 96]. These filters feature low-harmonic distortion, come factory tuned
to a user-specified corner frequency, require no external components or adjustments, and operate
with a dynamic input voltage range from non-critical +/- 5V to +/-18V power supplies [Frequency
Devices 96]. To implement these filters into the SANS, a double-sided printed circuit board
(PCB), shown in Figure 4.6, was designed and machined to receive all six filter DIPs as well as
three quad op-amp LM324 DIPs configured as voltage-followers to provide input and output cir-
cuit protection. Figure 4.7 shows the schematic diagram for one channel in this low-pass filter

circuitry.

Figure 4.6: The Double-Sided Low-Pass Filter PCB

in Vo
Vin » out »
DP74

InFrom My /4LM324 R ‘\g) K5y 14LM324
G

Out to A/D

Figure 4.7: Schematic Diagram for One Channel of the Low-pass Filter Circuitry

32

5. DC-DC Converter

To provide for the requisite +/-15 VDC, a DATEL model BWR-15/330-D12 DC-DC Con-
verter is used to convert the unregulated 12 VDC battery input to regulated +/-15 VDC to power
the low-pass filter circuits as well as the IMU. This converter features over-current and short-cir-
cuit protection, a compact form-factor, high reliability, a minimum efficiency of 82%, and
employs switching regulator technology, which minimizes heat generation and current usage
[DATEL 95]. Though the DC-DC converter ensures a low noise/ripple in the output signal, the
converter is augmented with additional capacitors in parallel with both the input and output pins

of the device. Figure 4.8 shows the use of these capacitors in the DC-DC converter circuitry.

Cl: 0.1 uF Electrolytic Capacitor
C2: 100 uF Electrolytic Capacitor

————+ Battery +15V Out L 1
C2 |C1
Commo >
[Battery -15 V Out 2 (i__

Figure 4.8: DC-DC Converter Circuit

The value of C1 was selected so as to filter any high-frequency radio frequencies (RF) that
may get inducted into the circuit from surrounding components, and the value of C2 was selected
so as to filter any high-frequency switching noise from the converter itself (the converter switches
at 165 KHz) [DATEL 95]. This DC-DC Converter is physically mounted on the same PCB on
which the low-pass filters are mounted. This configuration allows the use of PCB “tracks” to sup-
ply the filter circuitry with +/-15VDC. This regulated +/-15VDC as well as IMU sensor signals
are routed to and from the PCB via a DB25.

6. Ribbon Cable

Physically connecting the IMU, Low-pass Filters/DC-DC Converter PCB, the Analog-Digital
Converter, input power, water speed sensor, and depth sensor, is a 25-strand flat ribbon cable.
This cable enables all system components to be easily interconnected. Table 4.2 gives the pinout

of this 25-strand ribbon cable as well as all DB25 connectors used in the system..

33

Pin Number Color Description
1 Black IMU x-axis acceleration output
2 Gray X-axis acceleration input to A/D
3 Blue IMU y-axis acceleration output
4 Yellow IMU z-axis acceleration output
5 Red z-axis acceleration input to A/D
6 Black unused
7 Gray unused
8 Blue -15VDC
9 Yellow GND (Ground)
10 Red unused
11 Black +15VDC
12 Gray unused
13 Blue Depth sensor input to A/D
14 White y-axis acceleration input to A/D
15 Purple IMU z-axis angular-rate output
16 Green z-axis angular-rate input to A/D
17 Orange +12 VDC Battery In
18 Brown Water speed sensor input to A/D
19 White unused
20 Purple y-axis angular-rate input to A/D
21 Green x-axis angular-rate input to A/D
22 Orange IMU x-axis angular-rate output
23 Brown IMU y-axis angular-rate output
24 White unused
25 Purple unused

Table 4.3: Pinout of the Ribbon Cable and DB25 Connectors

34

7. Compass

The compass used in the SANS project is a Precision Navigation model TCM2 Electronic
Compass Module. This compass does not employ the mechanical gimbal technology utilized in
the compass described in [Bachmann 95], but rather employs a three-axis magnetometer and a
high-performance two-axis tilt sensor in a small form-factor [TCM2 95]. The TCM2 compass
provides readings of not only heading, but also pitch, role, and surrounding magnetic field
strength. The TCM2 provides greater accuracy by calibrating (performed by the user) for distor-
tion fields in all tilt orientations, providing an alarm when local magnetic anomalies are present,

and giving out-of-range warnings when the unit is being tilted too far [TCM2 95].

8. Other Components

The water speed sensor and the depth sensor are those described in [Bachmann 95] and there-
fore not depicted in Figure 4.2. The GPS antenna shown in Figure 4.2 is an active antenna, which
was selected for its performance and low-profile. Because the E.S.P. Ethernet module’s output
media type is AUI, a standard AUI-to-BNC media converter is employed to allow the use of dura-
ble RG-58 coax cable to span the roughly 100m distance required while pulling the towfish
behind a towing vessel. The GPS/DGPS Interface box is nothing more than an adapter to inter-
face the GPS receiver signal with the serial COM2 port of the E.S.P. computer.

C. SUMMARY

The SANS design described in this chapter is significantly different from that described in
[Bachmann 95]. The processing capability, along with the GPS/DGPS receiver, is now on-board
the SANS, making it completely self-contained with its only external link being that of a DOS
ethernet environment to a remote PC. The IMU sensor data, after low-pass filtering, along with
water speed and depth data, are converted from analog to digital with 12-bit resolution, and then
joined with GPS data in the on-board computer which computes updated attitude and position
information to be exported over an ethernet socket. The hardware for this version of the SANS
was chosen to comply with the requirements set forth in [Kwak 93]. Though there are many pos-
sible choices of hardware for each of the components in Figure 4.2, trade-offs between accuracy,

size, power requirements, and cost must be considered. As further advances in miniaturization are

35

made, accuracy will continue to increase while price and size decrease, thus making it easier to

meet the challenges of the SANS baseline requirements.

36

V. SOFTWARE DEVELOPMENT

A. INTRODUCTION

The purpose of the SANS software remains the same as that described in [Bachmann 95]: “to
utilize IMU, heading, and water-speed information to implement an INS, and then integrate this
with GPS information into a single-system which can produce continually accurate navigational
information in real time.” This chapter will not re-introduce the software already adequately pre-
sented in [Bachmann 95], but rather will present only those changes, additions and updates, to the

software described for use on the previous prototype SANS.

B. SOFTWARE DESCRIPTION

This implementation continues to use a majority of the software designed by [Bachmann 95],
and for the most part, unchanged. However, the changes in the hardware architecture have driven
subsequent changes to the software design to enable its use in the current SANS. Figure 5.1
shows the software objects and data flow of the current SANS. Though already previously stated,
these hardware changes, along with the subsequent software changes and additions, are again pre-

sented in detail as follows:

1. Compass Data

In the SANS described by [Bachmann 95], the compass data was included in the packets
received via modem from the towfish. This compass data was then parsed out of this packet for
use. This Xmodem packet code is no longer required and has been removed. In the current ver-
sion of the SANS, the compass data is received via the COM2 serial port, and thus requires code
to communicate with the serial port, as well as code to check the “checksum” and header of each
compass message received. This change was easily implemented by simply cutting, pasting, and

altering previous com port and checksum code. This code is provided in Appendix A.

2. GPS Data

The code required to process GPS information is only slightly different from that described by
[Bachmann 95]. The only changes required were driven by the use of an 8-channel receiver vice
the 6-channel GPS receiver used previously. The 8-channel receiver sends a longer message, thus

the only changes were to adjust the message length and the location of the checksum character in

the GPS message.

The code was also modified to include a differential check. Before the code recognizes a GPS
message as being valid, the message must pass three conditions; 1) A checksum check, 2) The fix
must be based on at least 4 satellites, and 3) The differential bit in the message must be set (i.e.,

the fix must have the differential correction calculated into it). This updated code is provided in

Appendix A as well.
MAIN
iti Valid
Polsh!i‘gl;on ?PosmonDGPS osition
> messages
NAVIGATOR [
GP
‘ Positlson
INS
Heading, speed, linear
T acceFer Plons anc? GPS
angular rates
DGPS gosition
SAMPLER |« messages
Heading Sensor Blcfl?l?ER
samples
Fasiion
Compass A2D charactérs
B SERIAL
headi
[compsagagne S5k

COMPASS
BUFFER

aracters

BUFFERED
SERIAL
PORT

Compass message
} compa g

Figure 5.1: SANS Software Objects and Data Flow

38

3. Inertial Sensor Data

Like the compass data, the inertial sensor data was previously included in the packets received
via modem from the towfish. Currently however, the filtered inertial data is input directly to the
A/D converter module in the on-board processor. Therefore, there is additional code running in

the SANS software system which operates the A/D converter module, as well as buffers this data.

a. A2D

The A/D module, when delivered, came with C source code to run a demo of the module.
This code was modified and converted to C++ to fit the SANS application and its object oriented
design. The A2D class provides all the requisite software operation of the A/D module in the
E.S.P. computer. The A/D module is completely controlled through software. Primary to this
control is the manipulation of the A2D Control Register and the A2D Status Register. These reg-
isters are manipulated by writing to and reading from specific memory addresses. Specifically,
the A2D Control Register is at address 0x108, and the A2D Status register is at 0x102. The A2D
class is designed such that the user maintains some degree of flexibility. For instance, the user can
choose between one of two base addresses, 0x100 or 0x300, from which these important A2D
registers are then created by adding an offset (08h and 02h respectively) to this base address.

Though the A2D class has many member functions, the SANS software only uses a few in
accomplishing its mission. All those member functions not directly utilized in this particular
application are useful to troubleshoot problems with the A2D module, or allow a wide range of
options to tailor its use to a particular application. The class code is well commented, and easily
stands without any further discussion. However, for the benefit of the reader, the following gen-

eral discussion of how the A2D module works in the SANS application is deemed beneficial.

The A2D, as stated in Chapter IV, provides 12 bits of resolution, or 212 = 4096 discrete
quantization levels. There are two modes to employ the A2D module: differential mode, or sin-
gle-ended mode. The SANS application employs the A2D in the single-ended mode of operation.
In this mode, the A2D is able to sample the dual-ended swing of the IMU sensor signals, and rep-
resent these voltages as a digital value in the range 0 - 4095. A general A2D conversion table is
provided as Table 5.1 to further illustrate how the sensor voltages are mapped over to their digital

equivalents.

39

Sensor DC Voltage Converted Equivalent
+10 Volts 4095
+5 Volts | 3071
0 Volts 2047
-5 Volts 1023
-10 Volts 0

Table 5.1: A2D DC-to-Digital Conversion Mapping

When an A2D object is instantiated, the class constructor (see Appendix A, A2D.cpp) sets
several default data member values, and then reads the A2D configuration file A2D.cfg. This
configuration file provides a simple manner in which a user can change the way the A2D module
operates without having to re-compile the source code. When the function readConfigFile() is
called, it reads the A2D.cfg file one line at a time and loads those respective variables described
on each line of this file with those values found on each line. This prepares the software for ini-
tializing the A2D hardware. The constructor initializes the system addresses to setup for A2D
operation, then initializes the A2D hardware using those variables that were loaded upon reading
the configuration file. The A2D object gets instantiated when a Sampler object gets instantiated
as the A2D object “a2d1” is a private data member of the Sampler class.

The A2D module gets set into operation by a call to initSampler(). This sampler class
member function executes a sequence of function calls to A2D class member functions which set
the A2D module into operation. Mainly, they program the sequencer to tell it which channels to
sample in which order, reset the A2D First-In-First-Out (FIFO) to enable it to receive data, and
then toggle the trigger bit in the A2D Control Register from a low to a high which starts the A2D
into operation.

During SANS operation, the Sampler class member function readSamples() is called
repeatedly to retrieve inertial data from the A2D FIFO. 1t first checks to ensure that the FIFO is
not FULL. If the FIFO ever gets filled without being immediately emptied, it will continue to
push data into the FIFO. Since there is no room for additional data, all samples from that point on
will be lost. So, it is evident that preventing the FIFO from overflowing is paramount to SANS

operation. If the this check is ever true, the SANS software will terminate execution. To prevent

40

FIFO overflow, one need only be mindful of the rate at which the A2D is sampling its inputs and
be sure to empty out the FIFO at the same rate or faster. If the FIFO does have data in it, this data
is emptied from the FIFO and stored in a doubly-subscripted array with 8 rows and 1000 columns
to coincide with storing up to 1000, 8 channel samples of sensor data. Figure 5.2 presents a

model of this doubly-subscripted array and how it stores the data.

X-aCC X-acc
y-acc y-acc
Z-aCcC Z-acc
X-ang X-ang
y-ang y-ang
Z-ang Z-ang
waterspeed waterspeed
depth depth
0 I . Coe e e w999

Sample Number/Array Index
Figure 5.2: Model of the A2D Sample Array
As the samples are being emptied from the FIFO, the variable “timeCounter” is incre-
mented once for every 8 samples that are pulled from the FIFO. This variable is then multiplied
by the sample period to calculate the “deltaT” or the time between adjacent samples. The reason-
ing behind using this type of data structure to temporarily store the data is to enable access to a
history of samples in order to employ a digital filtering scheme. In the case of the SANS, it

employs a very simple form of low-pass filtering by averaging over all the samples received since

the last sample was taken from this array.

C. SUMMARY

All software additions and updates to the SANS software were made in keeping with object-
oriented paradigms. The software was written in Borland 3.1, C++ for DOS.

Since the publication of [Bachmann 95], there have been many significant as well as minor
changes/updates to the SANS software. The compass data is now received from a serial port vice
being received via an Xmodem packet. The GPS data is still received from a serial port, but the

GPS receiver is now an 8-channel receiver instead of a 6-channel. The inertial, water speed, and

41

depth data is no longer being received via an Xmodem packet, but rather is being input directly
into the A/D module in the E.S.P. computer. Consequently, all the Xmodem packet code is no
longer used in the SANS software system. All these hardware changes have driven software
changes that have propagated throughout the software. For this reason, a complete copy of all
SANS software is given as Appendix A. A further discussion of those software updates incorpo-
rated into the SANS between the publication of [Bachmann 95] and this thesis, is presented in
[Bachmann 96].

42

VI. SYSTEM TESTING

A. INTRODUCTION

This chapter presents the test method and the experimental results of testing used to determine
the functionality and accuracy of the SANS. Bench testing was performed to ensure the entire
system was functioning properly in its current state. The system was then tested by conducting
tilt-table tests in order to verify the operation of the Inertial Measurement Unit and its associated
filter software. It was further tested by conducting a static GPS test to test the operation of the
positioning capabilities of the SANS. . Lastly, it was given a static heading test to ensure proper
operation of the Kalman filter in determining heading.

Figure 6.1 presents a data flow diagram of the SANS navigation filter. This diagram is pre-
sented at this point to provide a basis for discussion of the following test results. The reader is
referred to [Bachmann 95, 96], and [McGhee 95] for an in-depth discussion of this filter. This
twelve-state velocity-aided navigation filter is implemented in the SANS software provided as

Appendix A and Appendix B.

B. IMU TESTS

The purpose of these tests was to qualitatively ensure that the SANS was able to accurately
track changes in attitude. Paramount to getting the SANS to do this, is to find a suitable value for
the gain K1(shown in Figure 6.1), the biasWght, sampleWght (all in INS.CPP), and x/yAc-
celScale factors (in LOCATION.H). The results presented in this chapter are for the pitch axis
only. A similar process still remains to be done for the roll axis.

With the SANS mounted to the tilt-table described in [Bachmann 96], a series of pitch tests
were conducted. For these tests, the IMU outputs were sampled at a rate of 40 Hz. During test-
ing, it was noticed that the SANS produced update rates between 6-10 Hz.

Tuning data for the SANS was obtained by moving the SANS unit through pitch excursions
within a 45 degree range. The attitude as determined by the SANS was then plotted and compared
with the actual motion of the unit. Through this comparison, it was possible to determine an initial
scale factor. This process was repeated several times until the attitude determined by the filter
‘matched’ the true motion of the unit. From this analysis, a rate sensor scale factor of 4.1 enabled

the filter to register a pitch of 45 degrees when the SANS was pitched to that angle.

43

Accelerometers p Accelerometers (XV, z‘a)
Ao Yo 2q 0 = asin-=2
| > a -) x—xa~g$1n6 o
. y =73 +gsind- cos
Estimated Bias ¢a = —asin z- CZ)SG Z = Z +gcosd- cos@

(pb’ Qba rb)

VG, 5.9

T(¢,0,vy)

gular—rate 4
sor
Euler Angles

Magnetlc Compass (9,0, y)

+ (%.9.) North (?)zc East Velocnv North (& East)Position
3 + X _, y
w? s w <>® e e
é—» J - -
v 3 - J
K

3 + Apparent
Current

(x50

R(0.0.9) I Norn &
- East Accel
(x,,5,)

Weighted Reset

GPS Position
Wat%trspeed — R ((I), 0, V)

w

1
At

2 < K, [

Note: Difference taken

Euler Angles é‘é‘;‘:’vrggl before integrator reset.
(¢,0,v) GPS Fixes

Figure 6.1: SANS Navigation Filter

In order to tune the filter for accurate operation, the rate sensor bias value must first be deter-
mined. To do this, the gain value K1 is set to zero in order to prevent accelerometer data from
getting to the first integrator. Without the accelerometer data, only the high frequency data from
the angular-rate sensors is input to the first integrator with the estimated bias. Taking the com-
manded tilt-table angles to be truth then, any errors in attitude can be attributed to the bias and
scale factor.

Having determined the initial scale factor to be 4.1 and setting K1=0.0, a series of pitch tests
were conducted in order to determine the correct bias weights. In order to obtain a starting point
for this analysis, and based on similar testing discussed in [Bachmann 95], an initial bias value
(biasWght) of 0.999 was chosen for the first pitch test. Figure 6.2 shows the results of the first 45

degree pitch excursion with K1 = 0.0, bias value = 0.999, and the scale factor set to 4.1.

44

50 T T T
S, -3 dEg/sEC slope kovbsse
. _|:’ _____ e - T
¥ H
4 I~

30 |- ¢ M
_ ol [
8 £I<_ _>| :
Bb 20 2 15 sec |
O + -
N’ « v
S 2 I
B - | ° b
2 w0 . - bias rate back -
A S | to zero

0% Z I | :
I (I
i I
_10 : =I
0 10 20 40 50 60

Time (s3€:conds)
Figure 6.2: 45 Degree Pitch Excursion w/K1=0, biasWght=.999, scale factor= 4.1
The shape of the plot in Figure 6.2 is determined by the value of a “virtual’ time constant. For

the sake of this discussion, this time constant is T. The method in which the SANS software
determines the rate bias value can be essentially modeled as a low-pass filter. Specifically, the
SANS software figures this rate bias according to the model depicted in Figure 6.3. This figure
describes a linear system where the accumulating rate bias is subtracted from each new angular-
rate value, multiplied by the sampleWght ((Af) /1), which is (1 - biasWght), and then this

value is added to the rate bias sum.

new sample rate bias

—

u -

Figure 6.3: Model of Rate Bias Low-pass Filter

45

From linear system theory, in the s-domain, it can be shown that the transfer function of this

system is:

1
1+1s

Assuming the 10 degree/second pitch excursion to be a unit step function, the unit step

response of this system is:

x(f) = Ll—e_mJ

By taking the first derivative, it can be shown that the bias filter output slope is 1/7. Using the
relation that the sampleWght (.001 for the first test) is equal to the ratio of the time between sam-
ples (at a sample rate of 7 Hz, this gives a period of 0.142) and T, it can be shown that, for the first
test depicted in Figure 6.2, T is approximately 142 seconds. That is,

0.001 = -A—Tf - 1—§1=>fc = 142 sec

Given the known angular-rate of the pitch excursion was 10 degrees/second, the bias filter output

slope can then be calculated as:

10
= 0.07 (deg/sec)/sec

From the plot, it appears to have taken about 4.5 seconds to complete the 45 degree angular-rate
excursion. Multiplying the filter slope by the 4.5 seconds yields a resulting bias estimate of
approximately 0.3 deg/sec. Again, from the plot, the slope of the curve after it reached 45 deg,
but before it started its return to zero, agrees with the calculations.

In short, the filter is behaving just as it should. During the course of the excursion to 45
degrees, the bias filter accumulates a rate bias of 0.3 deg/sec. Since the filter time constant is only
142 seconds, and the SANS only underwent a 4.5 second excursion, it did not have time to correct
for this bias. Additionally, since the bias is subtracted from each new sample, the result is the
negative sloping portion of the curve while the SANS is at 45 degrees pitch.

Obviously, the goal of this analysis is to minimize any accumulated rate bias while the SANS
is undergoing pitch or roll excursions. To accomplish this, the value of the time constant T needs

to be long enough to minimize the bias filter slope, which in turn, minimizes the accumulated rate

bias.

46

45

Rielooon, T
N ° “k0b9393” «
40 . *
s ;

35 » -

30 N N
— - -
Lt N A
& . ’
o2 : .
Z 2 .
= 15 > 2>
O P g
e hd .
& 10 . N Bias

Initialization not long : o &

: enough N\ . : Sa;n}}le effect

0% IR e : :

-5 1 1 . I

o 20 40 100 120 140

60 80
Time (seconds)

Figure 6.4: 45 Degree Pitch Excursion w/K1=0, biasWght=.9999, scale factor= 4.1

Figure 6.4 shows the test results after increasing the filter time constant by a factor of 10. As
shown in the plot, the pitch values sloped off less by about a factor of 10 (as expected) during a
pitch excursion to 45 degrees. The decreasing curve leading up to the 45 degree pitch is due to
not initializing the bias filter with enough samples. For these tests, the filter was only initialized
with 100 samples, which represents about 15 seconds. However, since the time constant is much
larger, the filter should be initialized over more samples. Ideally, the filter should be initialized for
T seconds. The plot still shows some bias effect as well as the effects of undersampling (or slow
update rate). Here, the navigation filter gets an update just before the tilt-table stops, but the filter
still thinks it has a rate bias and applies it to the next sample, which occurs after the tilt-table has
stopped.

Figure 6.5 shows the result of another similar test, only with K1 = 0.1, biasWght = .9999,
sampleWght = .0001, and xAccelScale = 4.1. This test re-introduces the low-frequency data
(accelometer data) into the integrator. This plot shows yet more accurate performance, but dis-

plays an “overshoot” in both directions of the excursion. This overshoot can be alleviated by
adjusting the scale factor.

47

T ¥ T

T T T T T T

’k1b39933” o
45 /M iy
| Overshoot due to :

high scale factor

EI P,
ad s re®
1

w
i3
T

P tev ng,

[¥]
o1
T

cs e soe e

Pitch (chl)egrees)

[y
<
T

-
o]
T

YI00 ks g ss

(L]
T
S xde o
. >
v&'s“‘*“"*'p

(=3
-

-5

_r

[¢] 10 20 30 50 60 70 80 90 100

itlgime (seconds
Figure 6.5: 45 Degree Pitch Excursion w/K1=0.1, biasWght=.9999, scale factor= 4.1

Figure 6.6 shows the result of another similar test, only with K1 = 0.1, biasWght = .9999,
sampleWght = .0001, and an adjusted scale factor, xAccelScale = 3.895. This plot shows an
undershoot, indicating the scale factor was too low. Additionally, it still shows a small amount of
sampling effect. This can only be corrected by getting the navigation filter to run faster. This can

be easily accomplished by adding a math co-processor to the SANS computer.

45

P T 4
- z "k1b9999s” «
40 | M * B
% >
> >
35 | . . §
. .
30 - - B
<
-
—
G2 : : |
D « *
& : *-
0)20 ° * -
<] : :
15 x ” B
S : :
S0l - M 4
[a W) > *
> E
- -
S - :; g
] L T e S T T T L U T T ST, -
_5 1
¢} 20 40 60 80

100 120
Time (seconds)

Figure 6.6: 45 Degree Pitch Excursion w/K1=0.1, biasWght=.9999, scale factor= 3.895

48

C. STATIC GPS TEST

The purpose of this test was to ensure proper functioning of the DGPS and the Kalman filter in
calculating position. With the SANS stationary, operating, and receiving differentially corrected
GPS fixes, position updates were recorded over a 30 minute period at a rate of 10 Hz. Figure 6.7
confirms proper operation of the DGPS hardware and the Kalman filter software. The position

updates show an oscillating behavior roughly centered about the origin.

15 T T T T T T
: N vattl" 4

10

~
-
L
& s .
N’
[
.2
ey
7 %%
O
Ay
- %
E S <,
0] B
> e
5 &
_10 ‘{ ~
g%,.e;%f"
-15 1 N
-25 =20 -15 -10 -5 0 5 10 15 20

X Grid Position (feet)
Figure 6.7: Static GPS Test Results

The results shown in Figure 6.7 are well within the 10 meter requirements outlined in [Kwak
93]. By looking at a plot of the x position, it was determined that the greatest drifts shown in Fig-
ure 6.7 occurred early into the test, and as time went on, these drifts got smaller. This plot shows
how the SANS Kalman filter “learns” as time progresses. In fact, this drift becomes smaller and
smaller due to the accumulation of apparent current. At the beginning of the test, the apparent
current is small. Any error in location is attributed to apparent current, so as time goes on, the
magnitude of the apparent current grows. Because the apparent current velocity is added to the
North & East velocity, the difference between the INS determined position and the GPS deter-
mined position decreases with time. Figure 6.8 shows a plot of the magnitude of the apparent cur-
rent during the same test as that depicted in Figure 6.7. This plot shows that the apparent current
starts out small, but quickly adjusts to a randomly varying value reflecting the accumulation of all

System errors.

49

Tattl” =

%
L

Velocity (feet/second)

. 8oo 1000 1200 1400 1800 1800
Time (seconds)

Figure 6.8: Apparent Current

o] 200 400 600

D. STATIC HEADING TEST

The purpose of this test was to ensure that the heading calculated by the Kalman filter was in
fact continuous in behavior. That is, a rotation through North in the clockwise direction should not
cause the heading value to go back to zero, but rather continue to increase. With the SANS sta-
tionary and running, the compass was rotated several complete rotations in both the clockwise
and counterclockwise directions. As Figure 6.9 shows, the heading value is in fact continuous in

nature as the plot of heading does not show any discontinuity at the zero degree crossing point.

50

Heading (degrees)

=300 |

-400 |

0 10 20 30 50 80 70 80

40
Time (seconds)
Figure 6.9: Static Heading Test Results

E. SUMMARY

This chapter provides an explanation and results analysis of the experimental tests performed
on the SANS to determine its proper functioning under the newly designed architecture.

Dynamic tilt-table tests were performed in order to “tune” the software scale factors, bias val-
ues, and gain factor K1 used in the Kalman filter. These test also confirmed the proper operation
of the SANS in general.

The DGPS and the associated software was tested by conducting a static test during which the
SANS remained stationary while getting position fixes. This test confirmed the proper operation
of the DGPS hardware and software. The behavior of the results also indicate that the SANS soft-
ware Kalman filter is properly attributing its navigation errors to apparent current, as expected.

The compass and associated software was tested by analyzing the heading output of the SANS
while the compass was rotated through several complete rotations. The results show a continuous
heading output from the SANS, that is, there are no discontinuous “jumps” as the compass rotates
through North.

Though extensive testing of the SANS still remains, initial testing indicates qualitatively that
the SANS does function properly. Based on observations during this testing, the SANS shows an

improved performance over the previous proof of concept prototype. Mainly, the SANS now pro-

51

- Wﬁi————.——{

vides an improved update rate of up to 10 Hz in comparison to the 5 Hz of the prototype. This
increase in update rate has reduced the effects of undersampling experienced with the prototype
and explained in [Bachmann 95]. Figure 6.6 provides insight to conclude the SANS is still suffer-
ing from some effects of undersampling. This effect will most likely be alleviated with the

planned addition of a math co-processor to the E.S.P. CPU Module.

52

VII. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

A. CONCLUSIONS

The research issues addressed by this thesis were 1) Evaluate the hardware architecture of the
prototype SANS, 2) Develop a hardware configuration which will enable the SANS to be housed
in one small, self-contained package, and 3) Evaluate the feasibility of an AUV accurately navi-
gating from point to point in open-ocean transit using this hardware configuration.

The work conducted in addressing the first of these questions revealed several sources of nav-
igation inaccuracy. The analog low-pass filter circuitry used in the prototype SANS was not ade-
quately attenuating the angular-rate sensor noise below the resolution of the least significant bit of
the 12-bit A/D, and was over-designed to require high current, thus generated a great deal of heat.
It was also discovered that circuit components were being adversely affected by heat. Specifi-
cally, the x-angular-rate signal displayed a significant growth behavior over time as the circuit
heated up. Both of these problems were alleviated by employing higher quality, commercially
available analog filters, and also employing a switching DC-DC converter in place of the linear
regulators employed in the prototype SANS. All this circuitry was designed into a small double-
sided PCB.

In addressing the second of these questions, an emphasis on making the SANS integrated and
self-contained produced a configuration in which all SANS components are physically packaged
in a project box measuring 17.5” X 6.125” X 3.0”. In the prototype SANS, the IMU, compass,
GPS antenna, and water speed/depth sensors were physically separated from the computer and
DGPS receiver. The newly designed SANS no longer requires the use of the data logging com-
puter (which did the A/D conversion and assembled data packets) or the Motorola modems. The
SANS now employs a E.S.P. 486 DX2 50 mini computer with an internal 12-bit A/D converter,
DC-DC converter module (enables computer to be powered from a 12 Volt battery), Ethernet
module (enables SANS to be networked in a client/server environment), PCMCIA module (pro-
vides SANS with expandability), and memory storage modules. From observing the SANS oper-
ation during bench testing, it is evident the system runs faster (gives faster update rates) since it is

no longer hindered by the “bottleneck™ induced by the Xmodem transfer of data employed by the
prototype SANS.

53

Though the last research question was not directly addressed in detailed at-sea testing, those

tests that were conducted for this thesis qualitatively indicate that the newly designed hardware
configuration provides a higher level of performance to the SANS. From this result, it can be
extrapolated that the feasibility of an AUV accurately navigating during open-ocean transit, is at
least as high as that achieved with the prototype SANS. It is likely that the newly designed SANS

will demonstrate increased accuracy in at-sea trials.

B. RECOMMENDATIONS FOR FUTURE WORK

There are many ways to build on the foundation this and related research has established. In
addition to comprehensive at-sea testing, and since this project research is dynamic in nature,
there are several other areas that remain to be addressed as they pertain to the SANS. Before any
worthwhile at-sea testing can be accomplished, further tilt-table/bench testing needs to be con-
ducted. In order to optimize the performance of the Kalman filter used for inertial navigation,
testing needs to be done in order to better optimize the gains in the Kalman filter. By analyzing
the data from varied accelerometer and angular-rate tests, one can better choose what these gain
values need to be.

An issue directly related to testing is that of post-processing. The post-processing code writ-
ten to run on the previous prototype SANS should be updated/changed to enable its use on the
newly designed SANS. Through post-processing test data, one can more easily run and re-run the
tests in the goal of more easily optimizing the Kalman filter gains. The current version of the
SANS software does not save the “raw” sensor data. This should be made possible. With the
help of post-processing code, one needs only run a particular tilt/bench/cart test one time, and
then take the raw data back, analyze it, adjust gains and re-run the test in order to optimize gains.

There are hardware issues that remain and are areas for future work. The SANS uses a paddle-
wheel type water speed sensor. This is a rather crude and inaccurate sensor, and should be
upgraded to one which can deliver reliable data at the slower velocities under which the towfish
and Phoenix AUV operate. Additionally, in order to conduct future at-sea testing, the DGPS
antenna currently used on the SANS will have to be upgraded. In previous sea trials, the towfish
would become fowled by seaweed. Under these conditions, the current DGPS antenna will not
survive. Due to difficulties in acquiring software drivers for the Ethernet module, the network

connection between the SANS and an external PC was not established during the course of .this

thesis. In order to conduct at-sea testing, this network connection is a must, so work still remains
in bringing this aspect of the SANS to fruition.

Lastly, the final step in this research will be incorporation of the SANS into the NPS AUV. In
this work, there should not be any significant changes to the hardware. However, there will be
requirements in interfacing this hardware with the operating system running the NPS AUV. It
may be beneficial from both a space-saving aspect as well as from the aspect of having more com-
puting power, to transfer all software operation over to the Sun Voyager workstation which cur-
rently accomplishes mission control for the NPS AUV. In this case, the issues of serial port
communications, and A/D conversion will have to be readdressed before this can be successful.
On the other hand, there is a distinct advantage to leaving the SANS as is and simply integrating
it into the NPS AUV as another client in its established client/server environment. A detailed

study of these alternatives will be required before the best solution can be developed.

55

56

APPENDIX A: Real Time Navigation Source Code(C++)

A. TOWTYPES.H

#ifndef _ TOETYPES_H
#define _ TOETYPES_H

#include <stdio.h>
#include <dos.h>
#include <time.h>

#include "globals.h" // Types used by serial communications software

#define GPSBLOCKSIZE 76// Size of Motorola @@Ea position message
#define COMPSIZE 60 // Max size of compass message
#define biasNumber 10 // Number of packets used to calculate initial bias

#define ONE_G 32.2185// One g in feet per second
#define GRAVITY 32.2185 // In feet per second

#define TicksToSecs(x) ((double) ((10 * x) / 182))

typedef char ONEBYTE;
typedef short TWOBYTE;
typedef long FOURBYTE;

typedef unsigned char UNSIGNED_ONEBYTE;
typedef unsigned short UNSIGNED_TWOBYTE;
typedef unsigned long UNSIGNED_ FOURBYTE;

// Holds lat/long expressed in milseconds
struct latLongMilSec {

long latitude;

long longitude;
I

// Holds a latitude or longitude expressed in hours minutes and degrees
struct T_GEODETIC {

TWOBYTE degrees;
UNSIGNED_TWOBYTE minutes;
double seconds;

¥

// Holds a latitude and longitude expressed as T _CGEODETICs
struct latLongPosition {

T_GEODETIC latitude;

T_GEODETIC longitude;
Y

// Holds a grid position
struct grid {

double x,v,z;
}i

57

// 3 X 3 matrix
struct matrix (

float element{3][3];
Y

// 3 X 1 matrix or vector
struct wvector {

float element[3];
¥

// Oversize area to hold a GPS message
typedef BYTE GPSdata[2 * GPSBLOCKSIZE]:

// Defines a type for holding compass messages
typedef BYTE compData[2 * COMPSIZE];

// Structure for passing around various types of INS information.
// The positions in the sample field of a stampedSample structure

// sample[0]: x acceleration

// sample[l]: y acceleration

// sample[2]: z acceleration

// sample[3}: phi

// sample(4]: theta

// sample[5]: psi

// sample[6]: water speed

// sample[7]: heading

struct stampedSample (

grid est; //position as estimated by the INS.
float rawSample[8]; //Original readings for post processing
double sample[8]; //sampler converted sample.

float deltaT;
float current;
}i
#endif

B. LOCATION.H

//Conversion constants for location of

//36:35:42.2N andl121:52:28.7W

#define LatToFt 0.10134 //converts degrees Latitude to ft
#define LongToFt 0.08156 //converts degrees Longitude to ft
#define HemisphereConversion -1 //-1 if west of of Greenwich

#define RADIANMAGVAR 0.261799 // Local area Magnetic variation in radians

#define xyAccellLimit ONE_G// Max accell in x and y diretion
#define zAccellLimit 2 * ONE_G // Max accel in z direction
#define rateLimit 0.872665// Max rotational rate in radians
#define speedLimit 25.3 //Max water speed

#define headingLimit 2 * M_PI

#define pScale 1.0 //roll

58

#define
#define

#define
#define
#define
#define
#define

#define

#define

#define

#define

#define
#define

#define

#define
#define

gScale 1.0 //pitch
rScale 1.0 //yaw

XAccelScale 1.34 //1.078 //pitch
vAccelScale 3.895 //roll
zAccelScale 1.34 //1.038

pUnits (angular) (pScale * (((angular-2047.0) / 2047.0)
* 50.0) * (M_PI/180.0))

gUnits (angular) (gScale * (((angular-2047.0) / 2047.0)
* 50.0) * (M_PI/180.0))

rUnits (angular) (rScale * ({(angular-2047.0) / 2047.0)
* 50.0) * (M_PI/180.0))

XAccelUnits(linear) (xAccelScale * ((linear-2047.0) / }
2047.0) * GRAVITY)

yAccelUnits (linear) (yAccelScale * ((linear-2047.0) /
2047.0) * GRAVITY)

zAccelUnits(linear) (zAccelScale * ((linear-2047.0) /
2047.0) * (2.0 * GRAVITY))

waterSpeedScale 1.0 //1.827

depthUnits (depth) (((depth - 819.0) / (4095.0-819.0))
* 180.0)
waterSpeedUnits (speed) (waterSpeedScale * ((speed -

2047.0) / 2048.0) * 25.3) //feet per second

radToDeg (180.0/M_PI)
degToRad (M_PI/180.0)

59

C. TOWFISH.CPP

#include
#include
#include
#include
#include

#include
#include

<stdlib.h>
<stdio.h>
<string.h>
<iostream.h>
<conio.h>

"toetypes.h"
"nav.h"

int DbreakHandler (void);
void screenSetUp (void) ;
void printPosition (const latLongPosition&) ;

/***

PROGRAM:
AUTHOR :
DATE:
FUNCTION:

RETURNS:

Main

Eric Bachmann, Dave Gay

11 July 1995

Drives the navigator and its associated software. Counts

the positions and displays each to the screen. Exited only when
control break is entered at the keyboard.

0

CALLED BY:none

CALLS:

initializeNavigator (nav.h)
navPosit (nav.h)
printPosition

breakHandler

’k****************************/

int

main (int argc, char *argv[])

{

ctrlbrk(breakHandler); // trap all breaks to release com ports
setcbrk(l); // turn break checking on at all times

char *dataFile, *scriptFile, *attitudeFile;

switch (arge) ({
case 2:

scriptFile = new char[strlen(argv([l])];
strepy (scriptFile, argv[1l]);//explicit script file only

dataFile = "data";//default raw data file
attitudeFile = "attitude";
break;

case 3:

scriptFile = new char{strlen(argv(1l])];
strepy (scriptFile, argv[1]);//explicit script file

dataFile = new char[strlen(argvi{2])];

strepy (dataFile, argv([2]);//explicit data file
attitudeFile = "attitude"; ’

break;

60

case 4:
scriptFile = new char[strlen(argv([1l])];
strepy (scriptFile, argv[l]);//explicit script file
dataFile = new char[strlen(argv([2])];
strcpy (dataFile, argv(2]);//explicit data file
attitudeFile = new char{strlen(argv(3])];
stropy (attitudeFile, argv([3]);//explicit attitude file

break;
default:
scriptFile = "script";//default script file
dataFile = “rawdata";//default raw data file
attitudeFile = "attitude";
clrscr();

cout << "\nWriting script information to " << scriptFile;
cout << "\nWriting binary data to " << dataFile;
cout << "\nWriting attitude data to " << attitudeFile << endl;

cout << "\nInitializing . . .";

//Instantiate the navigator
navigator navl(scriptFile, dataFile, attitudeFile);

. latLongPosition currentLocation; // Lat/Long of most recent fix
Boolean fixReceived = FALSE;//True if a new fix was recieved
int fixCount=0; // Count of navigation fixes recieved

//Initialize the navigator
currentLocation = navl.initializeNavigator();

gotoxy (1,6);
cout << "Initialization Complete!\n";
cout << "Initial Position:\n";

//Print the initial position
cout << "latitude: " << currentLocation.latitude.degrees << ':°
<< currentLocation.latitude.minutes << ':'
<< currentlLocation.latitude.seconds << endl;
cout << "longitude: " << currentLocation.longitude.degrees << ':'
<< currentLocation.longitude.minutes << ‘':°
<< currentLocation.longitude.seconds;

screenSetUp () ;

while (TRUE) {
// Attempt to get a fix from the navigator
fixReceived = navl.navPosit (currentLocation)
if (fixReceived) {
// New fix recileved
gotoxy (8,11);
cout << ++fixCount;

61

printPosition (currentLocation) ;

/***

PROGRAM: printPositon

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Displays position to the screen
RETURNS : void

CALLED BY: mail

CALLS: none

**********************’k******‘k***'k*******'k***7\'***************************/

void
printPosition (const latLongPosition& posit)
{
gotoxy (11, 14) ;
cout << posit.latitude.degrees << ':!
<< posit.latitude.minutes << ':' << posit.latitude.seconds << endl;
gotoxy (12,15) ;
cout << posit.longitude.degrees << ':°
<< posit.longitude.minutes << ':' << posit.longitude.seconds << endl;

/***

PROGRAM : breakHandler

AUTHOR:: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Cleans up com ports upon program exit.
RETURNS : 0

CALLED BY: main

CALLS: cleanup (portBank.h)

-k******************/

int
breakHandler (void)

{
COMports.cleanup() ;
exit (0);
return 0; // keep the compiler happy

62

/***

PROGRAM: screenSetup

AUTHOR:Eric Bachmann, Randy Walker
DATE:12 May 1996

FUNCTION:Sets up the output screen

RETURNS : 0

CALLED BY: main

CALLS: none
***/
void

screenSetUp (void)

{ -

gotoxy (4,11) ;
cout << "Fix ";

gotoxy (1,14) ;

cout << "Latitude: " << "\nLongitude: ";
gotoxy (1,17) ;

cout << "Roll: " << "\nPitch: ";

gotoxy (1,25) ;
cout << "deltaT: ";

int col(45),row(1l);
gotoxy (col, row++) ;

cout << "x accel: ";
gotoxy (col, row++) ;

cout << "y accel: *";
gotoxy (col, row++) ;
cout << "z accel: *;

gotoxy (col, row++) ;

cout << "phi dot: *;
gotoxy (col, row++) ;

cout << "theta dot: *;
gotoxy (col, row++) ;

cout << "psi dot: ";
gotoxy (col, row++) ;

cout << "water speed: “;
gotoxy (col, row++) ;

cout << "heading: *;
col = 45;
row = 12;

gotoxy (col, row++) ;
cout << "x: *;
gotoxy (col, row++) ;
cout << "y: ";
gotoxy (col, row++) ;
cout << "z: “;
gotoxy (col, row++) ;
cout << "phi: *;

63

gotoxy (col, row++) ;
cout << "theta: ";
gotoxy (col, row++) ;
cout << '"psi: ";

gotoxy (45, 20) ;
cout << "Bias Values";

gotoxy (60,20) ;
cout << "Current Values";

D. NAV.H

#ifndef __NAVIGATOR_H
#define _ NAVIGATOR_H
#include <stdio.h>
#include <fstream.h>
#include <iostream.h>
#include <math.h>

#include "toetypes.h"
#include "gps.h"
#include "ins.h"
#include "location.h"

// Converts milseconds to degrees
#define MSECS_TO_DEGREES (1.0/(1000.0 * 3600.0))

'
/***'k*************************

CLASS: navigator
AUTHOR: Eric Bachmann, Dave Gay
DATE : 11 July 1995

FUNCTION: Combines GPS and INS information to return the current

estimated position.
***/

class navigator {
public:

//Constructor, opens script and data files
navigator (char scriptFile[] = "navScript", char dataFile[] = "navData",
char attitudeFile[] = "navatt"): positionData (scriptFile),
attitudeData(attitudeFile),elapsedTime(0.0), fixCount (0), gpsSpeedSum(0.0),
insSpeedSum(0.0)
{if ((rawData = fopen(dataFile, "wb")) == NULL) {

cout << "NO RAW DATA RECORD";}

//Destructor, closes script and data files
~navigator () {positionData.close();attitudeData.close();fclose(rawData);}

64

//provides the navigator's best estimate of current position
Boolean navPosit (latLongPositiong);

//Initialize the navigator
latLongPosition initializeNavigator () ;

private:

float elapsedTime; // Tracks time since navigator was initialized
int fixCount; // the number of position fixes obtained

double gpsSpeed, insSpeed;
double gpsSpeedSum, insSpeedSum;

INS insl;//INS object instance.
GPS gpsl;//GPS object instance.

ofstream attitudeData;// Post processing attitude data.
ofstream positionData; // Position script file
FILE *rawData;// Post processing binary data file.

latLongMilSec origin; //lat-long of navigational origin

//Write position information to script file
void writeScriptPosit (int, latLongMilSec&, char);

//Write an INS packet and its timeStamp to the outPut file
volid writelInsData (const stampedSample& drPosition);
//Write a GPS message to the outPut file.

void writeGpsData (const GPSdatas satPosition);

//Returns the position in Miliseconds
latLongMilSec getMilSec(const GPSdata&) ;

//Convert position in milSec to degress, minutes, seconds and milsec
latLongPosition milSecToLatLong (const latLongMilSec&) ;

//Convert xy (grid) position to lat long
latLongMilSec gridToMilSec (const grid&) ;
//Converts lat/long to xy position
grid milSecToGrid(const latLongMilSecs) ;
//Parses and returns the time of a GPS message.
double getGpsTime (const GPSdatas rawMessage) ;

//Parses and returns the velocity in fps of a GPS message.
double getGpsVelocity (const GPSdatas rawMessage) ;
}i

#endif

E. NAV.CPP

#include "nav.h"
#include "signal.h"
#define SIGFPE 8// Floating point exception

/***-k*****

PROGRAM: navPosit
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995
FUNCTION:Provides the navigator's best estimate of current position.
Attempts to obtain GPS and INS position fixes from the gps
and ins objects and copies the most accurate fix available
into the input argument 'navPosition'. Writes the raw position
fix data to the output file for post processing. Sets a return
flag to indicate whether a valid fix was obtained.
RETURNS: TRUE, a valid position fix is in the wvariable 'navPosition'.
FALSE, otherwise.
CALLED BY:towfish.cpp (main)
CALLS: gpsPosition (gps.h)
correctPosition (ins.h)
insPosition {(ins.h)
getMilSec (nav.h)
gridToMilSec (nav.h)
milSecToGrid (nav.h)
milSecToLatLong (nav.h)
writeScriptPosit (nav.h)

***/

void fpeNavPosit(int sig)

(if (sig == SIGFPE) cerr << “floating point error in navPosit\n";}
Boolean

navigator::navPosit (latLongPosition& navPosition)

{

signal (SIGFPE, fpeNavPosit);

GPSdata satPosition; // the latest GPS position

stampedSample drPosition; // the latest INS position

latLongMilSec gpsMilSec; // the latest GPS position in milseconds
latLongMilSec insMilSec; // the latest INS position in milseconds

//Attempt to get the INS and GPS positions
Boolean insFlag = insl.insPosition(drPosition) ;
Boolean gpsFlag = gpsl.gpsPosition(satPosition);

//INS and GPS positions obtained?
if (insFlag && gpsFlag)
gotoxy (20,11) ;
cout << "GPS";
// Write INS packet and attitude info to an output file
elapsedTime += drPosition.deltaT;
writeInsData (drPosition);
//Write GPS message to output file.
writeGpsData (satPosition);

66

//Parse position from GPS messsage
gpsMilSec = getMilSec(satPosition);
//Write milsec position to script file
writeScriptPosit (++fixCount, gpsMilSec, 'G');
//Pass GPS position to INS object for navigation corrections.
insl.correctPosition (milSecToGrid (gpsMilSec), getCGpsTime(satPosition));
//Covert position in mil sec to latitude and longitude.
navPosition = milSecToLatLong (gpsMilSec) ;
return TRUE;
}
else {
//0nly INS position obtained?
if (insFlag) ¢
gotoxy (20, 11) ;
cout << " "
// Write INS Packet to output file.
elapsedTime += drPosition.deltaT;
writeInsData (drPosition);
insMilSec = gridToMilSec(drPosition.est);
//Write milsec position to script file
writeScriptPosit (++fixCount, insMilSec, 'I');
navPosition = milSecTolatLong(insMilSec);

insSpeed = drPosition.sample([6];

return TRUE;
}
else {
// Only GPS position obtained?
if (gpsFlag) ¢
gotoxy (20, 11) ;
cout << "GPS";
// Write GPS message to output file.
writeGpsData(satPosition) ;
//Parse position from GPS messsage
gpsMilSec = getMilSec(satPosition);
//Write milsec position to script file
writeScriptPosit (++fixCount, gpsMilSec, 'G');
//Pass GPS position to INS object for navigation corrections.
insl.correctPosition{milSecToGrid (gpsMilSec),
getGpsTime (satPosition));
//Convert position in mil sec to lat/long.
navPosition = milSecToLatLong(getMilSec(satPosition));

gpsSpeed = getGpsVelocity (satPosition);
gpsSpeedSum += gpsSpeed;

insSpeedSum += insSpeed;

gotoxy (58,9) ;

cout << gpsSpeed;

gotoxy (58,10) ;

cout << gpsSpeedSum / insSpeedSum;

return TRUE;

67

else {
return FALSE; // No new position available

i***********************************'k’k**********************************

PROGRAM: writeScriptPosit

AUTHOR : Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Writes the fix number, the position in milSec and the type
of fix to the script file.

RETURNS : void

CALLED BY: navPosit (nav.cpp)
initialPosit (nav.cpp)
CALLS: None

***/

void
navigator::writeScriptPosit (int fixNumber, latLongMilSec& posit, char fixType)
{
positionData << fixNumber << ' '
<< posit.latitude << '
<< posit.longitude << '
<< fixType << '
<< elapsedTime << endl;

/***

PROGRAM : writeInsData

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Writes the packet and the time stamp contained in a stamped
sample to the out put file for post processing.

RETURNS : void

CALLED BY: navPosit (nav.cpp)

CALLS: None

***/

void
navigator: :writeInsData (const stampedSample& drPosition)

{
//MUST ADD CODE TO RECORD DATA FOR POST PROCESSING HERE

//0utput attitude data to a file

attitudeData << elapsedTime << ' !
<< drPosition.sample[0] << ' !
<< -1.0 * drPosition.sample[l] << '
<< drPosition.sample[2] << '
<< (radToDeg * drPosition.sample[3]) << ' '
<< (radToDeg * drPosition.sample[4]) << ' °
<< (radToDeg * drPosition.sample[5]) << ' °
<< drPosition.sample[6] << '

68

}

<< (radToDeg * drPosition.sample[7]) << ' '
<< drPosition.current << endl;

/***

PROGRAM:
AUTHOR:
DATE:
FUNCTION:

RETURNS :
CALLED BY:
CALLS:

writeGpsData
Eric Bachmann, Dave Gay

11 July 1995

Writes a raw GPS message to a binary output file for
post processing.

void

navPosit (nav.cpp)

None

***/

void

navigator::writeGpsData (const GPSdata& satPosition)

{

for(int j = 0; j < GPSBLOCKSIZE; j++) {
putc(satPosition[j], rawData);

/************’k**

PROGRAM:
AUTHOR::
DATE:
FUNCTION:

initializeNavigator

Eric Bachmann, Dave Gay

11 July 1995

Obtains an initial GPS fix for use as a navigational origin for

grid positions used by the INS object. Saves the origin and passes
it to the INS object in latLong form.

RETURNS:
CALLED BY:
CALLS:

TRUE

towfish (main)
gpsPosition (gps.cpp)
correctPosition (ins.cpp)
getMilSec (nav.cpp)
milSecToGrid (nav.cpp)

***’k*/

latLongPosition
navigator::initializeNavigator ()

{

‘stampedSample biasPackets[biasNumber];

GPSdata satPosition; //gps position message

// Loop until an initial GPS fix is obtained.
while(!gpsl.gpsPosition(satPosition)) { /* */)

// Write GPS message for the grid origin to output file.
writeGpsData (satPosition);
//Save navigational origin for later grid position conversions.

origin =

getMilSec (satPosition);

//Write the initial position to the script file

69

writeScriptPosit (0, origin, 'G');
//Pass time of first GPS fix to INS object initialization routine.
insl.insSetUp (getGpsTime (satPosition), biasPackets);

for (int i = 0; i < biasNumber; i++) {
writeInsData (biasPackets[i]);

}

insSpeed = biasPackets[biasNumber - 1].sample[6];
gpsSpeed = getGpsVelocity (satPosition);

//Return the initial position to the caller.
return milSecTolatLong (origin) ;

/***'k***************************

PROGRAM:getMilSec
AUTHOR:Eric Bachmann, Dave Gay
DATE:11 July 1995
FUNCTION:Extracts a position in mili seconds from a Motorola (@@Ba)
position contained in the input argument 'rawMessage' and returns it.
RETURNS:The latitude and longitude in milseconds.
CALLED BY: navPosit (nav.cpp)
initializeNavigator (nav.cpp)
CALLS:none.

***/

latLongMilSec
navigator::getMilSec(const GPSdata& rawMessage) |

FOURBYTE tempsdbyte;
latLongMilSec position;

tempsdbyte = rawMessage[15];

tempsdbyte = (temps4byte<<8) + rawMessage([1l6];
tempsdbyte = (tempsédbyte<<«8) + rawMessage[1l7];
tempsdbyte = (temps4byte<<8) + rawMessage[1l8];

position.latitude = tempsébyte;

tempsdbyte = rawMessage[1l9];

tempsdbyte = (tempsdbyte<<8) + rawMessage[20];
tempsdbyte = (temps4byte<<8) + rawMessage[21];
tempsdbyte = (tempsdbyte<<8) + rawMessage([22];

position.longitude = tempsdbyte;

return position;

70

/**********’k**

PROGRAM:milSecToLatLong

AUTHOR:Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION:Converts a position expressed in totally in mili seconds to
degress, minutes, seconds and mili seconds and returns the result.

RETURNS:The position in degress, minutes, seconds and mili seconds.

CALLED BY: navPosit (nav.cpp)

CALLS:none

***/

latLongPosition
navigator::milSecToLatLong (const latLongMilSec& milSec) {

latLongPosition position;

double degrees, minutes;

degrees = (double)milSec.latitude * MSECS_TO_DEGREES;
position.latitude.degrees = (TWOBYTE)degrees;

if (degrees < 0)
degrees = fabs (degrees);

minutes = (degrees - (TWOBYTE)degrees) * 60.0;
position.latitude.minutes = (TWOBYTE)minutes;

position.latitude.seconds = (minutes - (TWOBYTE)minutes) * 60.0;

degrees = (double)milSec.longitude * MSECS_TO_DEGREES;
position.longitude.degrees = (TWOBYTE)degrees;

if (degrees < 0)

degrees = fabs (degrees) ;
minutes = (degrees - (TWOBYTE)degrees) * 60.0;
position.longitude.minutes = (TWOBYTE)minutes;
position.longitude.seconds = (minutes - (TWOBYTE)minutes) * 60.0;

return position;

71

/***

PROGRAM:gridToMilSec

AUTHOR:Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION:Convert a grid position to a latitude and longitude in mil-
seconds and returns the result.

RETURNS:The latitude and longitude in milseconds.

CALLED BY:navPosit (nav.cpp)

CALLS:none

***/

void fpeGridToMilSec (int sig)

{if (sig == SIGFPE) cerr << "floating point error in gridToMilSec\n";}
latLongMilSec

navigator::gridToMilSec (const grid& posit)

{

signal (SIGFPE, fpeGridToMilSec):;
latLongMilSec latLong;

//converts grid in ft to latitude

latLong.latitude = origin.latitude + (posit.x / LatToFt);

//converts grid-in ft to longitude

latliong.longitude = origin.longitude +
HemisphereConversion * (posit.y / LongToFt) ;

return latLong;

/***

PROGRAM:milSecToGrid
AUTHOR:Eric Bachmann, Dave Gay
DATE:11 July 1995
FUNCTION:Convert a latitude and longitude expressed in milseconds to
a grid position based on the lat/long of the grid origin.
RETURNS:The grid position
CALLED BY:navPosit (nav.cpp)
initializeNavigator (nav.cpp)
CALLS:none
COMMENTS:altitude is always assumed to be zero.

***/

//Converts latitude/longitude to xy coords in ft from origin
grid

navigator::milSecToGrid (const latLongMilSec& posit)

{

grid position;
position.x = (posit.latitude - origin.latitude) * LatToFt;
position.y = HemisphereConversion *

(posit.longitude - origin.longitude) * LongToFt;

position.z = 0;

return position;

72

/***

PROGRAM: getGpsTime
AUTHOR:Eric Bachmann, Dave Gay
DATE:11 July 1995
FUNCTION:Parse the time of a gps message.
RETURNS:The time of the gps message in seconds
CALLED BY:navPosit (nav.cpp)
initializeNavigator (nav.cpp)

CALLS:none
***/
double
navigator::getGpsTime (const GPSdata& rawMessage)
{

UNSIGNED_ONEBYTE tempchar, hours, minutes;

UNSIGNED_FOURBYTE tempudbyte;

double seconds;

hours = rawMessage([8];
minutes = rawMessage(9];

tempchar = rawMessage{1l0];

tempudbyte = rawMessage[1ll];

tempudbyte = (tempudbyte<<8) + rawMessage(l2];
tempudbyte = (tempudbyte<<8) + rawMessage[1l3];
tempudbyte = (tempudbyte<<8) + rawMessage[1l4];
seconds = (double)tempchar + (((double)tempudbyte)/1.0E+9);

return hours * 3600.0 + minutes * 60.0 + seconds;

/***
PROGRAM:getGpsVelocity
AUTHOR:Eric Bachmann, Dave Gay
DATE:11 July 1995
FUNCTION:Parse the velocity out of a gps message.
RETURNS:The velocitiy of the gps message in feet per second
CALLED BY:navPosit (nav.cpp)
initializeNavigator (nav.cpp)

CALLS:none

*******************-k-k**/

double
navigator: :getGpsVelocity (const GPSdatas& rawMessage)
{

UNSIGNED_ONEBYTE tempchar=rawMessage[31];

return (double) (3.2804 * ((tempchar << 8) + rawMessage[32]) / 100.00);

73

F.

GPS.H

#ifndef _GPS_H
#define _GPS_H

#include <iostream.h>
#include <fstream.h>
#include <conio.h>

#include "portbank.h"
#include "toetypes.h®
#include "gpsbuff.h"®

/*********'k***

CLASS :gps

AUTHOR:Eric Bachmann, Dave Gay

DATE:11 July 1995

MODIFIED: 15 May 1996 by Eric Bachmann & Randy Walker
FUNCTION:Reads GPS messages from the GPS buffer. Checks for valid

checksum and minimun number of satelites in view.

***/

class GPS {

}:

public:
//Class Constructor
GPS() : portl(COMports.Init (CoMl, BYTE(4), b9600,
NOPARITY, BYTE(8), BYTE(1l), XON_XOFF, messages)) {)

//returns the latest gps position and a flag
Boolean gpsPosition (GPSdata&);

private:

//buffer for gps data
GPSbuffer messages;

//instantiates serial port communications on comm?
bufferedSerialPort& portl;

//calculates the check sum of the message
Boolean checkSumCheck (const GPSdata);

#endif

74

G. GPS.CPP

#include <math.h>
#include "gps.h"

/***

NAME :gpsPosition
AUTHOR: Eric Bachmann, Dave Gay
DATE:11 July 1995
MODIFIED: 15 May 1995 BY Eric Bachmann & Randy Walker
FUNCTION:Determines if an updated gps position message is available and
copies it into the input argument 'rawMessage'. If the message
has a valid checksum, was obtained with at least three
satelites in view, and contained the differential correction, a 'TRUE'
is returned to the caller,indicating that the message is valid.
RETURNS: TRUE, if a valid position message is contained in the
input argument.
CALLED BY: navPosit (navigator.h)
CALLS:Get (buffer.h)
checkSumCheck (gps.h)

***/

Boolean
GPS: :gpsPosition (GPSdata& rawMessage)
{

Boolean checkSumFlag;
unsigned long Mask(4);

if (messages.Get (rawMessage)) {
// Check for a valid check sum and more the 3 satelites and DGPS

return Boolean{ (checkSumCheck (rawMessage)) && (rawMessage[39] > 3)
&& ((rawMessage [GPSBLOCKSIZE - 4] & Mask) == Mask));

}

else {
return FALSE; // No updated position is available.

75

/***

PROGRAM: checkSumCheck

AUTHOR:Eric Bachmann, Dave Gay

DATE:11 July 1995

MODIFIED: 15 May, 1996 by Eric Bachmann & Randy Walker

FUNCTION:Takes an exclusive or of bytes 2 through 78 in a Motorola format
(@@EA) position message and compares it to the checksum of the
message.

RETURNS: TRUE, if the message contains a valid checksum

CALLED BY: gpsPosition (gps)

CALLS: none

***/

Boolean
GPS: :checkSumCheck (const GPSdata newMessage)

{
BYTE chkSum(0) ;

for (int i = 2; i < GPSBLOCKSIZE - 3; i++) {
chkSum ~= newMessage[i];

}

return Boolean(chkSum == newMessage [GPSBLOCKSIZE - 31);
}
H. INS.H

#ifndef _INS_H
#define _INS_H

#include <time.h>
#include <math.h>
#include <dos.h>
#include <stdio.h>
#include <conio.h>
#include <fstream.h>
#include <iostream.h>

#include "toetypes.h"
#include "location.h"
#include "sampler.h"

/***

CLASS:ins

AUTHOR:Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION:Takes in linear accelerations, angular rates, speed and
heading information and uses kalman filtering techniques to return

a dead reconing position.
****************'k**/

class INS {

public:

76

//Constructor initializes gains
INS();

~INS() {3}

//returns the ins estimated position
Boolean insPosition (stampedSample&);

//Updates the x, y and z of the vehicle posture
void correctPosition (const grid&, double);

//Sets posture to the origin and developes initial biases
void insSetUp(double, stampedSample*);

private:

double posturel[6]; // ins estimated posture (x y z phi theta psi)
double velocities([6]; // ins estimated linear and angular velocities
// x-dot y-dot z-dot phi-dot theta-dot psi-dot
double current[3]; // ins estimated error current
// (x-dot y-dot z-dot)
double lastGPStime; //time of last gps position fix
sampler saml; //sampler instance
matrix rotationMatrix; //body to euler transformation matrix

double biasCorrection[8];//Software bias corrections for IMU rate
//sensors

// Kalman filter gains.
float Konel, Kone2, Ktwo, Kthreel, Kthree2, Kfourl, Kfour2;

// Finds the difference between two times of struct time type
double findDeltaT (struct time& next, struct time& last);

// Transforms from body coordinates to earth coordinates
// and removes the gravity component

void transformAccels (double[]);

// Transforms water speed reading to x and y components
void transformWaterSpeed (double, doublel]);

// Tranforms body euler rates to earth euler rates.
void transformBodyRates (double[]);

// Euler integrates the accelerations and updates the velocities
void updateVelocities (stampedSample&);

// Euler integrates the velocities and update the posture
void updatePosture (stampedSample&);

77

// Builds the body to euler rate matrix
matrix buildBodyRateMatrix() ;

// Builds the body to earth rotation matrix
void buildRotationMatrix () ;

//Calculates the imu bias correction during set up
void calculateBiasCorrections (stampedSample*) ;

//Applies bias corrections to a sample
void applyBiasCorrections (double sample(]);

}i

// Post multiply a matrix times a vector and return result.
vector operator* (matrix&, doublel[]);

#endif

I. INS.CPP

#include <iostream.h>

#include "signal.h"

#include "ins.h"

#define SIGFPE 8// Floating point exception

/***

PROGRAM: ins (constructor)

AUTHOR:Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION:Constructor initializes kalman filter gains and linear and
angular velocities.

RETURNS :nothing

CALLED BY: navigator class

CALLS: none

***/

INS::INS() : Konel(0.1l), Kone2(0.5),
Ktwo (0.6),
Kthreel(0.5), Kthree2(0.5),
Kfourl(0.5), Kfour2(0.5)

{
velocities[0] = 0.0;// x dot
velocities[1] = 0.0;// y dot
velocities([2] = 0.0;// z dot

velocities[3] =
velocities[4] =
velocities[5] =

.0;// phi dot
.0;// theta dot
.0;// psi dot

O O O o oo

//Set posture to straight and level at the origin.
posture[0] 0.0;
posture[1l] 0.0;

1t

78

posture[2] =
posture[3] =
posture(4] =
posture[5] =

OO oo

~

O O O O

// Initialize error current to zero
current{0] =
current 1]
current[2]

’

0.0
0.0;
0.0

’

fl

}

/***‘k***********

PROGRAM: findDeltaT

AUTHOR:Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION:Converts two times stored in the time structure type of
dos.h into the time in seconds and returns the difference.

RETURNS:difference in seconds between the two input times.

CALLED BY: insPosit (ins.cpp)

CALLS: none

***/

double

INS::findDeltaT (struct time& next, struct time& last)

{

double present, past;

present = next.ti_hour * 3600.0 + next.ti_min * 60.0
+ next.ti_sec + next.ti_hund / 100.0;
past = last.ti_hour * 3600.0 + last.ti_min * 60.0
+ last.ti_sec + last.ti_hund / 100.0;

// Did 2400 occur between present and past?
if (present < past) {

present += 86400.0;
}

return present - past;

79

/*‘k***

PROGRAM: insPosit
AUTHOR:Eric Bachmann, Dave Gay
DATE:11 July 1995
FUNCTION: Make dead reckoning position estimation using kalman
filtering. Inputs are linear accelerations, angular rates, speed and
heading. Primary input data is obtained from a sampler object via the
getSample method. This data is stored in the sample filed of a
stampedSample structure called newSample. The sample field is then
used as a working variable as the linear accelerations and angular
rates it contains are converted to earth coordinates and integrated
to determine current velocities and posture. The data is complimentary
filtered against itself, speed and magnetic heading.
RETURNS:position in grid coordinates as estimated by the INS
CALLED BY: navPosit (nav.cpp)
CALLS: getSample (sampler.cpp)
findDeltaT (ins.cpp)
transformBodyRates (ins.cpp)
buildRotationMatrix (ins.cpp)
transformAccels (ins)
transformWaterSpeed (ins)
'k***************************‘k**/
void fpelnsPosit (int sig)
{if (sig == SIGFPE) cerr << "floating point error in insPosit\n";)}

Boolean
INS::insPosition(stampedSample& newSample)
{

signal (SIGFPE, fpeInsPosit);

double thetal, phiA, xIncline, yIncline; // Working variables

double waterSpeedCorrection[3]; // Filter correction for drift
// and water speed

if (saml.getSample(newSample)) {

applyBiasCorrections (newSample.sample) ;

//Set output precision and fixed format
cout.precision(6);
cout.setf (ios::fixed);

//Display linear accelrations and angular rates
for (int-j = 0; j < 8; j++) {

gotoxy (59, j+1);

cout << newSample.sample[j];

//Display time delta to the screen.
gotoxy (9, 25) ;
cout << newSample.deltaT;

xIncline = newSample.sample[0] / GRAVITY;
yvIncline newSample.sample[1l] / (GRAVITY * cos(posture[4]));

i}

80

if (fabs(yIncline) > 1.0) ¢
static int inclineCount (0);
gotoxy (1,24);
cout << "Inclination errors: 0" << ++inclineCount << endl;
return FALSE;

//Calculate low freqg pitch and roll
thetalA = asin(xIncline);
phiA = -asin(yIncline);

//Transform body rates to euler rates.
transformBodyRates (newSample.sample) ;

//Calculate estimated roll rate (phi-dot).

velocities[3] = newSample.sample[3] + Konel * (phiA - posture([3]);
//Calculate estimated pitch rate (theta-dot).

velocities[4] = newSample.sample[4] + Kone2 * (thetad - posturel4]);
//Calculate estimated heading rate (psi-dot).

velocities[5] = newSample.sample[5] + Ktwo * (newSample.sample[7] -

posture[5]);

//integrate estimated pitch rate to obtain pitch angle
posture[3] += newSample.deltaT * velocities[3];

//integrate estimated roll rate to obtain roll angle

posture{4] += newSample.deltaT * velocities[4];

//integrate estimated yaw rate to obtain heading

posture[5] += newSample.deltaT * velocities[5];

//Display roll and pitch

gotoxy (8,17);

cout << (posture(3] * radToDegq) ;
gotoxy (8,18) ;

cout << (posturel4] * radToDeg) ;

buildRotationMatrix () ;

//Transform accels to earth coordinates
transformAccels (newSample.sample) ;

//Transform water speed to earth coordinates
transformWaterSpeed (newSample.sample[6], waterSpeedCorrection) ;

// Subtract out previous velocity and apply statistical gain

waterSpeedCorrection[0] = Kthreel * (waterSpeedCorrection{[0] -
velocities[0]);
waterSpeedCorrection[l] = Kthree2 * (waterSpeedCorrection[l] -

velocities[1]);
// Determine filtered accelerations

newSample.sample[0] += waterSpeedCorrection[0];
newSample.sample[l] += waterSpeedCorrection[l];

81

//Integrate accelerations to obtain velocities

velocities[0] += newSample.sample[0] * newSample.deltaT;
velocities[1l] += newSample.sample[1l] * newSample.deltaT;
velocities[2] += newSample.sample[2] * newSample.deltaT;

//Integrate velocities to obtain posture

posture{0] += (velocities[0] + current[0]) * newSample.deltaT;
posture[l] += (velocities[1l] + current[1l]) * newSample.deltaT;
posture[2] += velocities[2] * newSample.deltaT;

newSample.current = sgrt(current[0] * current[0] +
current[1l] * current[1l]);

newSample.sample[0] = posture[0];
newSample.sample[1l] = posture[l];
newSample.sample[2] = posture([2];
newSample.sample[3] = posture[3];
newSample.sample[4] = posturef4d];
newSample.sample[5] = posture{5];

//Display current location and posture
for (j = 0; J < 6; j++) {
gotoxy (52, 3+12) ;
cout << posturelj];
}
newSample.est.x = posture[0];
newSample.est.y = posture[l];
newSample.est.z = posture[2];

return TRUE;
}
else {
return FALSE;// New IMU information was unavailable.

}

/***

PROGRAM:correctPosition

AUTHOR:Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION: Reinitializes the INS based on a known position and compute
apparent current based on past accumulated errors of the INS. It is
called by the navigator each time a new GPS (true) fix is obtained.

RETURNS:void

CALLED BY: navPosit (nav)

CALLS:none

***/

void
INS::correctPosition(const grid& truePosit, double positTime)

{
double deltaT;

// Correct for new day if necessary
if (positTime < lastGPStime) {

82

positTime += 86400;

// Find time since last gps fix.
deltaT = positTime - lastGPStime;

// Detemine INS error since last gps fix
double deltaX = truePosit.x - posture[0];
double delta¥Y = truePosit.y - posture[l];

// Reinitialize posture to known position (gps fix)
posture[0] = truePosit.x;
posture[1l] truePosit.y;
posture[2]

// Add gain filtered error to previous errors
current [0] += Kfourl * (deltaX / deltaT);
current[1l] += Kfour2 * (deltaY / deltaTl);

// Display new error current values
for(int j = 0; J < 3; j++) {
gotoxy (60, j+21) ;
cout << current([j];

// Display updated posture
for (j = 0; j < 6; j++) {
gotoxy (52,3+12) ;
cout << posture([j];

// Save the time of the gps fix for next calculation
lastGPStime = positTime;

83

0.0; //Unit is assumed to be on the surface

/***

PROGRAM: insSetUp
AUTHOR:Eric Bachmann, Dave Gay
DATE:11 July 1995
FUNCTION:Initializes the INS system. Sets the posture to the origin.
Initializes the heading using magnetic compass information. Initilizes
the times of the last GPS fix and last IMU information.
RETURNS :void
CALLED BY:initializeNavigator (nav)
CALLS:calulateBiasCorrections (ins)
getSample (sampler)
buildRotationMatrix (ins)
transformWaterSpeed (ins)

***/

void fpeInsSetUp(int sig)
{if (sig == SIGFPE) cerr << "floating point error in inSetUp\n";}

void
INS::insSetUp(double originTime, stampedSample* biasPackets)

{
signal (SIGFPE, fpeInsSetUp);

//Initialize the sampler
saml.initSampler () ;

//set imu biases
calculateBiasCorrections (biasPackets) ;

//set initial true heading
posture[5] = biasPackets[biasNumber-1].sample[7];

//set initial speed
buildRotationMatrix() ;
transformWaterSpeed(biasPackets[biasNumber-1].sample(6], velocities);

// initialize times
lastGPStime = originTime;

//Display initial error current values
for(int j = 0; 7 < 3; j++) {
gotoxy (60, j+21) ;
cout << current[j];

84

/***

PROGRAM:transformAccels
AUTHOR:Eric Bachmann, Dave Gay
DATE:11 July 1995
FUNCTION:Transforms linear accelerations from body coordinates to
earth coordinates and removes the gravity component in the z direction.
RETURNS:void
CALLED BY: navPosit
CALLS: none

************'k**/

void
INS::transformAccels (double newSample[])
{

vector earthAccels;

newSample[0] -= GRAVITY * sin(posture[4]);
newSample[l] += GRAVITY * sin(posture[3]) * cos(posture[4d]);
newSample[2] += GRAVITY * cos(posture[3]) * cos(posture[d]);

earthAccels = rotationMatrix * newSample;
newSample[0] = earthAccels.element[0];
newSample[l] = earthAccels.element[1];
newSample[2] = earthAccels.element([2];

/***
PROGRAM:transformWaterSpeed
AUTHOR:Eric Bachmann, Dave Gay
DATE:11 July 1995
FUNCTION:Transforms water speed into a vector in earth coordinates
and returns them in the speedCorrection variable.
RETURNS :void
CALLED BY: navPosit
CALLS: none

’k**********‘k***/

void
INS: :transformWaterSpeed (double waterSpeed, double speedCorrection[])
{

double water[3] = {waterSpeed, 0.0, 0.0};

vector waterVelocities = rotationMatrix * water;

speedCorrection [0]
speedCorrection [1]
speedCorrection [2]

waterVelocitieg.element [0];
waterVelocities.element[1];
waterVelocities.element[2];

85

/***'k'k************************

PROGRAM: transformBodyRates
AUTHOR:Eric Bachmann, Dave Gay
DATE:11 July 1995

FUNCTION: Tranforms body euler rates to earth euler rates
RETURNS : none

CALLED BY: insPosit

CALLS: buildBodyRateMatrix

khkkhkhkkhkhkkhkkhkhhhkdhhhkk **'k*/

void
INS: :transformBodyRates (double newSample[])
{
vector earthRates = buildBodyRateMatrix() * & (newSample[3]);

newSample[3] = earthRates.element[0];
newSample[4] earthRates.element[1];
newSample[5] earthRates.element{2];

1

/***
PROGRAM: buildBodyRateMatrix

AUTHOR:Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION: Builds body to Euler rate translation matrix.

RETURNS : rate translation matrix
CALLED BY: insPosit
CALLS: none

***/

matrix
INS: :buildBodyRateMatrix ()
{

matrix rateTrans;

float tth = tan(posturel4]),
sphi sin(posture[3]),
cphi = cos(posture{3]),
cth = cos(posture(4]);

il

rateTrans.element{0][0] = 1.0;
rateTrans.element[0][1] = tth * sphi;
rateTrans.element[0] [2] = tth * cphi;

rateTrans.element[1]1[0] = 0.0;
rateTrans.element[1][1] = cphi;
rateTrans.element [1] [2] = -sphi;
rateTrans.element [2][0] = 0.0;
rateTrans.element[2][1] = sphi / cth;

rateTrans.element[2][2] = cphi / cth;

return rateTrans;

86

/***7\'***********************

PROGRAM: buildRotationMatrix
AUTHOR:Eric Bachmann, Dave Gay
DATE:11 July 1995
FUNCTION:Sets the body to earth coordinate rotation matrix.
RETURNS :void
CALLED BY: insPosit
insSetUp
CALLS :none

'Ic*********'k******************/

void
INS: :buildRotationMatrix()
{ .
float spsi = sin(posture(5]),
cpsi = cos{posturel[5]),
sth = sin(posture([4]),
sphi = sin(posture[3]),
cphi = cos(posture[3]),
cth = cos(posturel4d]);
rotationMatrix.element[0][0] = cpsi * cth;
rotationMatrix.element{0][1] = (cpsi * sth * sphi) - (spsi * cphi);
rotationMatrix.element[0][2] = (cpsi * sth * cphi) + (spsi * sphi);
rotationMatrix.element[1][0] = spsi * cth;
rotationMatrix.element[1][1] = (cpsi * cphi) + (spsi * sth * sphi);
rotationMatrix.element[1][2] = (spsi * sth * cphi) - (cpsi * sphi);
rotatianatrix.element[2][0] = -sth;
rotationMatrix.element[2] [1] = cth * sphi;
rotationMatrix.element[2][2] = cth * cphi;
}

/***

PROGRAM:post multiplicaﬁion operator *

AUTHOR:Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION:Post multiply a 3 X 3 matrix times a 3 X 1 vector and
return the result.

RETURNS : 3 X 1 vector

CALLED BY:

CALLS :None

***/

vector
operator* (matrix& transform, double state[])
{
vector result;
for (int i = 0; i < 3; i++) {
result.element[i] = 0.0;

for (int j = 0; j < 3; j++) {

87

result.element[i] += transform.element[i][j] * state[j];

}

return result;

/*'k‘k***********************************‘k********************************

PROGRAM:calculateBiasCorrections

AUTHOR:Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION: Calculates the initial imu bias by averaging a number of
imu readings.

RETURNS : none
CALLED BY: insSetup
CALLS :none

**********************************-k**************************************/

void fpeCalculateBiasCorrections(int sig)
{if (sig == SIGFPE) cerr << "floating point error in
CalculateBiasCorrections\n";}

void
INS::calculateBiasCorrections (stampedSample* biasSample)

{
signal (SIGFPE, fpeCalculateBiasCorrections);

biasCorrection([3] = 0.0;
biasCorrection[4] = 0.0;
biasCorrection([5] = 0.0;
for (int 1 = 0; i < biasNumber; i++) {

while(!saml.getSample (biasSample[i])) {(/* */};
biasCorrection[3] += biasSample[i].sample[3];
biasCorrection[4] += biasSample[i].sample[4];
biasCorrection([5] += biasSample[i] .sample[5];

// Find the average of the biasNumber packets

biasCorrection[3] - (biasCorrection{3]/biasNumber) ;
biasCorrection[4] - (biasCorrection{4]/biasNumber) ;
biasCorrection[5] = - (biasCorrection[5]/biasNumber) ;

//0utput the initial bias wvalues
for(int § = 3; j < 6; j++) {
gotoxy (45, j+18);
cout << biasCorrection[j];

88

/******’k**
PROGRAM: applyBiasCorrections

AUTHOR:Eric Bachmann, Dave Gay
DATE:11 July 1995

FUNCTION: Applies updated bias corrections to a sample.
RETURNS: void

CALLED BY: insPosit

CALLS: none

***/

void
INS: :applyBiasCorrections (double sample[])

{
static const float biasWght (0.9999), sampleWght (0.0001);

//Calculate updated bias values

biasCorrection[3] = (biasWght * biasCorrection[3])
- (sampleWght * sample(3]);

biasCorrection[4] = (biasWght * biasCorrection[4])
- (sampleWght * sample{4]);

biasCorrection[5] = (biasWght * biasCorrection[5])

- (sampleWght * sample[5]);

//Apply the bias to the sample
sample([3] += biasCorrection[3];
sample[4] += biasCorrection[4];
sample[5] += biasCorrection[5];

// Output the biases

for(int j = 3; j < 6; Jj++) {
gotoxy (45, 3+18) ;
cout << biasCorrection[j];

89

J. SAMPLER .H

#ifndef _ SAMPLER_H
#define _ SAMPLER_H

#include <time.h>
#include <math.h>
#include <dos.h>
#include <conio.h>
#include <stdio.h>

#include "toetypes.h"
#include "location.h"
#include "a2d.h"

#include "compass.h"

#define MAX_ SAMPLE_NUM 1000
const int INBUFFSIZE = 512;

/***

CLASS:sampler

AUTHOR:Eric Bachmann, Randy Walker

DATE:15 May 1996

FUNCTION:Formats, timestamps, low pass filters and limit checks IMU,
water-speed and heading information.

COMMENTS: This class is extremely dependent upon the specific
hardware configuration. It is designed to isolate to the INS from

these particulars.
***/

class sampler {
public:
//Class Constructor
sampler () : sampleIndex(0), subSampleIndex(0),
samplePeriod(a2dl.chent * a2dl.delta_t * 0.000001){)

//Initializes Sampler
Boolean initSampler();

//checks for the arrival of a new sample and formats it.
Boolean getSample(stampedSample&) ;

private:
compass compl; //Compass instance
a2dClass a2dil; //A2D instance

float sample[MAX_SAMPLE_NUM] [8];

int subSampleIndex;

90

int sampleIndex;

int sampleCount;

float samplePeriod;

Boolean readSamples (stampedSample& newSample) ;
void filterSample (stampedSample& newSample) ;
void formatSample (stampedSample& newSample) ;

void increment (int& index)
{ if (++index == MAX SAMPLE NUM) index = 0;)

void decrement (int& index)
{ if (--index < 0) index = MAX SAMPLE NUM -

}i
#endif

91

1;}

K. SAMPLER.CPP

#include <iostream.h>
#include <conio.h>
#include "sampler.h"

/***

PROGRAM: initSampler

AUTHOR:Eric Bachmann, Randy Walker

DATE:12 May 1995

MODIFIED: 15 May 1996 by Eric Bachmann & Randy Walker
FUNCTION:Initializes the compass and the A2D module.
RETURNS : TRUE

CALLED BY:

CALLS: initCompass (), A2D member functions

***/

Boolean
sampler::initSampler ()
{

compl.initCompass () ;

a2dl.setRmsOff () ;
a2dl.setSequencer () ;
a2dl.lockTrigger () ;
az2dl.resetFifo () ;
a2dl.setFifo();
a2dl.unlockTrigger () ;
a2dl.setTrigger () ;

return TRUE;

92

/***

PROGRAM: getSample
AUTHOR:Eric Bachmann, Randy Walker
DATE:15 May 1996
FUNCTION:Prepares raw sample data for use by the INS object
RETURNS:TRUE, if a valid sample was obtained
CALLED BY:insPosit (ins)
insSetup (ins)
CALLS: Get (packetBuffer)
createSample (sampler)
formatSample (sampler)

inLimitSample (sampler)
*********************"k***/

//checks for the arrival of a new sample
Boolean

sampler: :getSample (stampedSample& newSample)
{

if (readSamples (newSample)) {
filterSample (newSample) ;
formatSample (newSample) ;

return TRUE;

return FALSE; //Sample packet not available

93

/***

PROGRAM: readeSamples

AUTHOR:Eric Bachmann, Randy Walker

DATE:12 May 1996

FUNCTION: Retrieves all samples of the IMU, water speed, and depth
that are present in the A2D FIFO until the FIFO is EMPTY. Calculates
delta_t.

RETURNS: Boolen: TRUE - There were new samples pulled from the FIFO

FALSE - There were no new samples
CALLED BY: getSample
CALLS: getFifoStatus (), getFifoDatal()

***/

Boolean
sampler: :readSamples (stampedSample& newSample)
{
//Did the FIFO overflow?
if (a2dl.getFifoStatus() == FULL) {
gotoxy (17,20) ;
cout << "FIFO Overflowed, execution terminated..." << endl;
exit (1) ;
3
//Does the FIFO have new samples?
if (a2dl.getFifoStatus() != EMPTY) {
sampleCount = 0; //Counts the number of samples taken

//Empty the FIFO
while (a2dl.getFifoStatus() != EMPTY) {

sample[sampleIndex] [subSampleIndex++] = a2dl.getFifoData();

//Has it pulled one sample of each channel from the FIFO?
if (subSampleIndex == 8) ({
subSampleIndex= 0;
increment (sampleIndex); //set to record next sample
++sampleCount ;

if (sampleCount > 0) {

//calculate time delta
newSample.deltaT = sampleCount * samplePeriod;

gotoxy (1,19);

printf (" ")

gotoxy (1,19);

printf ("sampleCount: 24", sampleCount) ;
return TRUE;

94

else {
return FALSE;

else {

//No new samples
return FALSE;

/*********************************-k*******************************‘k*****

PROGRAM: createSample

AUTHOR:Eric Bachmann, Randy Walker

DATE:15 May 1996

FUNCTION: Low pass filters by averaging over all samples received since
the last sample..

RETURNS : void
CALLED BY: getSample
CALLS: none

*******************'k***/
void
sampler::filterSample (stampedSample& newSample)
{
for (int i = 0; 1 < 8; i++) {
newSample.sample[i] = 0;
int j(sampleIndex);

for (i = 0; i < sampleCount; i++) {

decrement (j) ;

newSample.sample[0] += sample[j][0] / sampleCount;
newSample.sample[l] += sample[j][1l] / sampleCount;
newSample.sample[2] += sample[j][2] / sampleCount;
newSample.sample([3] += sample[j][3] / sampleCount;
newSample.sample[4] += sample[j][4] / sampleCount;
newSample.sample[5] += sample[j]([5] / sampleCount;
newSample.sample{6] += sample[j][6] / sampleCount;
newSample.sample[7] += sample[j][7] / sampleCount;

95

/***

PROGRAM: formatSample
AUTHOR:Eric Bachmann,
DATE:15 May 1996
FUNCTION:Converts integers representing voltage readings into
units which are useable by the INS.

RETURNS :

void

CALLED BY:getSample
CALLS :none

*****************-k-k**/

Randy Walker

//Calls the methods to convert the voltages to real world units
void
sampler::formatSample (stampedSample& newSample)

{

newSample

newSample

newSample.

newSample

.sample[0]
newSample.
newSample.

sample[1]
sample[2]

.sample[3]
newSample.
newSample.

sample([4]
sample[5]

sample[6]

.sample([7]

It

xXAccelUnits (newSample.sample[0]) ;
yAccelUnits (newSample.sample[1]) ;
zAccelUnits (newSample.sample[2]);

pUnits (newSample.sample[3]);
gUnits (newSample.sample(4]);

rUnits (newSample.sample([5]) ;

waterSpeedUnits (newSample.sample[6]);
compl .getHeading () ;

96

L. COMPASS.H

#ifndef _COMPASS_H
#define _COMPASS_H

#include <iostream.h>
#include <fstream.h>
#include <conio.h>

#include "portbank.h"
#include "toetypes.h"
#include "location.h"
#include "compBuff.h"

/***
CLASS :compass
AUTHOR:Eric Bachmann, Dave Gay
DATE:11 July 1995
MODIFIED: 15 May, 1996 by Eric Bachmann & Randy Walker
FUNCTION:Reads compass messages from the compass buffer. Checks for
validchecksum. Corrects heading for megnetic variation. Heading is

continous. There is no branch cut at 360 degrees.
*****************************’k******-k************************************/

class compass {
public:
//Class Constructor
compass () : port2(COMports.Init{(COM2, BYTE(3), b9600,
NOPARITY, BYTE(8), BYTE(1), NONE, headings))
{3

//Initialize currentHeading
float initCompass();

//returns the latest heading
float getHeading();

private:

//buffer for compass data
compBuffer headings;
|

//Maintains the most recently obtained heading.
float currentHeading;

//instantiates serial port communications on comm2
bufferedSerialPort& port2;
|
|
|
|

//calculates the check sum of the message
Boolean checkSumCheck (const compData&) ;

//Parses the heading out of a compass message.

97

float parseCompData(const compData&, const BYTE) ;

// Convert magnetic direction based on magnetic variation.
float trueHeading(const float);

// Returns the heading without branch cuts
float continousHeading(const float);

¥

#endif

M. COMPASS.CPP

#include <math.h>
#include '"compass.h"

float
compass: :initCompass ()
{
float tempHeading;
compData rawMessage;

while ((headings.Get (rawMessage)==FALSE)
I'l (checkSumCheck (rawMessage)==FALSE)) {)

tempHeading = parseCompData(rawMessage, 'C') * degToRad;
currentHeading = continousHeading(trueHeading (tempHeading));

return currentHeading;

}

98

/***
NAME:getHeading
AUTHOR: Eric Bachmann, Dave Cay
DATE:11 July 1995

FUNCTION:
Determines if an updated gps position message is available and
copies it into the input argument 'rawMessage'. If the message

has a valid checksum and was obtained with atleast three
satelites in view, a 'TRUE' is returned to the caller,
indicating that the message is valid.

RETURNS : TRUE, if a valid position message is contained in the
input argument.
CALLED BY: navPosit (navigator.h)

CALLS:Get (buffer.h)
checkSumCheck (gps.h)

***/

float

compass: :getHeading ()

{
float tempHeading;
Boolean checkSumFlag;
compData rawMessage;

if ((headings.Get (rawMessage)) && (checkSumCheck (rawMessage))) (

tempHeading = parseCompData(rawMessage, 'C') * degToRad;
currentHeading = _
continousHeading (trueHeading (tempHeading)) ;

return currentHeading;

3

else {
return currentHeading; // No updated position is available.

BYTE
asciiToHex (BYTE letter)
{

if (letter >= 'A*') {

return (letter - 'A' + 10);
}
else {

return (letter - 48);

99

!
!
i
7
\

/**’k**********

PROGRAM: checkSumCheck

AUTHOR:Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION:

Takes an exclusive or of bytes 2 through 78 in a Motorola format (GREA)
position message and compares it to the checksum of the message of the
message.

RETURNS: TRUE, if the message contains a valid checksum

CALLED BY: gpsPosition (gps)

CALLS: none

********************‘k**/

Boolean
compass: : checkSumCheck (const compDatas newMessage)

{
BYTE calChkSum(0) ;

BYTE mesChkSum(0) ;
for (int i = 1; newMessage[i] != '*'; i++) {

calChkSum *= newMessage(i];

mesChkSum = asciiToHex (newMessage[i+1]) * 16
+ asciiToHex (newMessage[i+2]);

return Boolean(calChkSum == mesChkSum) ;

100

/***

PROGRAM : trueHeading

AUTHOR: Eric Bachmann, Dave Gay
DATE : 11 July 1995
FUNCTION: Convert magnetic direction to true based on local magnetic
variation.
RETURNS : true heading
CALLED BY: insPosit
insSetUp
CALLS: none

’k*****'k**/

float
compass: :trueHeading (const float magHeading)

{
static double twoPi(2.0 * M_PI);
double trueHeading = magHeading + RADIANMAGVAR;:

i1f (trueHeading > twoPi) {

trueHeading -= twoPi;

return trueHeading;

101

/***

PROGRAM: continousHeading
AUTHOR: Eric Bachmann
DATE: 11 July 1995
FUNCTION: Maintains track of branch cuts and returns a continous heading.
RETURNS : continous true heading
CALLED BY: insPosit
insSetUp
CALLS: none

***/

float
compass: :continousHeading (const float trueHeading)
{

const float twoPi (2.0 * M_PI);

static int branchCutCount(0);

static float previousHeading (trueHeading);

if ((4.71 < previousHeading) && (trueHeading < 1.57))({
++branchCutCount; //Went through North in a right hand turn
}
else {
if ((1.57 > previousHeading) && (trueHeading > 4.71)) ¢
--branchCutCount;//Went through North in a left hand turn
}

previousHeading = trueHeading;

return trueHeading + (branchCutCount * twoPi);

102

/***********************************'************************************

PROGRAM: parseHeading

AUTHOR : Eric Bachmann
DATE: 11 July 1995
FUNCTION: Parses the heading out of a compass message.
RETURNS: the message heading as a float
CALLED BY: insPosit
insSetUp
CALLS: none

***/

float
co;:ass::parseCompData(const compData& rawMessage, const BYTE key)
{ float dataSum(0);

for(int j = 0; rawMessage[j] != key; j++){}

J++;

for(int i = 0; rawMessage[i + F] != '.'; i++){}

switch (1) ¢
case 3:

dataSum = (rawMessage[j] - 48) * 100.0 +

(rawMessage[j+1] - 48) * 10.0 +
(rawMessage[j+2] - 48) +
(rawMessage[j+4] - 48) * 0.1;
break;
case 2:
dataSum = (rawMessage[j] - 48) * 10.0 +
(rawMessage([j+1] - 48) +
(rawMessage[j+3] - 48) * 0.1;
break;
case 1:
dataSum = (rawMessage[j] - 48) +
(rawMessage[j+2] - 48) * 0.1;
break;

return dataSum;

103

N. A2D.H

#ifndef __A2D H
#define _ A2D H

#include <dos.h>

#include <math.h>

#include <conio.h>
#include <stdio.h>

#include <stdlib.
#include <stdarg.

h>
h>

#include <iostream.h>
#include <fstream.h>

//ESP A2D General Global Definitions
0x100 //Base address SEL=1->0x300 & SEL=0->0x100
1000 //FIFO size (MAX=1000 decimal)
0x10 //Max channels

#define DEFBASE
#define FIFOSIZE
#define MAXCHAN

//ESP A2D Status
//BASE+02h: 011D
#define INT_STAT
#define TRG_STAT

#define FULL
#define HALF
#define EMPTY

//ESP A2D Control Register

//BASE+08h: DDDD
//BASE+0%h: DDDD
#define GATELlOUT

#define TRG_POS
#define SET TRG
#define RST_TRG
#define INT_EN

#define DIFF
#define RMS

#define CAL
#define PRG_SEQ
#define ACDC
#define SAM_SEQ
#define RST _FIFO

Register Definitions

DDDD
0x10 /7
0x08 /7

0x01
0x05
0x06

DDDD
DDRR
0x0008 //

0x0010 //
0x0020 //
0x0040 //
0x0080 //

0x0400
0x0800

0x1000
0x1000

0x2000

0x4000
0x8000

0001 0000 INTERRUPT STATUS
0000 1000 TRIGGER STATUS

// 0000 0001 FIFO FULL
// 0000 0101 FIFO HALF FULL
// 0000 0110 FIFO EMPTY

Definitions

0000 0000 0000

0000
0000
0000
0000

/7
//

/7
//
/7
/7
//

//ESP ‘A2D Useful Definitions
0xXFFF8 // CLEAR RATE TO

#define CLRRATE

0000
0000
0000
0000

0000
0000

0001
0001
0010
0100
1000

0001
0010
0100
1000

0100
1000

0000
0000
0000
0000
0000

104

1000

0000
0000
0000
0000

0000
0000

0000
0000
0000
0000
0000

GATE1lOUT

TRIG POS
TRIG SET
TRIG CLR
IRQ ENAB

(1=IRQ Pending)
(1=Triggered)

(001=Full)
(101=Half Full)
(110=Empty)

(Always Driven)

(Trig on +1-)
(Active LOW)
(Active LOW)
(Active HIGH)

0000 DIFF/SE (1=DIFF 0=SE)
0000 RMS Mode (1=ON 0=0FF)

0000 CALL Mode (1=ON 0=0FF)
0000 SEQ Mode (1=PRG O0=RUN)
0000 ACDC Mode (1=DC 0=AC)

0000 SAMP/SEQ (1=SEQ 0=SAMP)
0000 FIFO Reset (1=EN 0=REW)

HIGHEST RATE

//***

// CLASS NAME: a2dClass

// AUTHOR: Randy Walker

// DATE: 27 March 1996

// DESCRIPTION: Provides for the software operation of the A2D module.

//***

//Class Definition for the A2D Class
class a2dClass {

public:

//Class Constructor; reads a2d.cfg file, initializes hardware
a2dClass () ;

//Reads a2d.cfg configuration file
void readConfigFile();

//éets address mapping
void initSysAddr (void);

//Initializes the A2D Control Register
void initHardware (void) ;

//Print out the variable ctrlw, for debug purposes
void printCtrlw(void);

//Sets the A2D Control Register for Single-Ended mode
void setSe(void);

//Sets the A2D Control Register for Differential mode
void setDiff (void) ;

//Loads sequencer memory with channel data
void setChannel (unsigned seq,unsigned ch,unsigned gl0,unsigned g2);

//Sets sequencer to program mode
void setProgSeq(void);

//Sets sequencer to run mode
void setRunSeq(void);

//Loads sequencer address counter with number of channels to scan.
void setCount (unsigned nch);

//Sets AC or DC Coupling
void setAcDc(unsigned acdc);

//Prevents triggering
void lockTrigger (void);

//Allow the triger to function
void unlockTrigger (void);

105

//Toggle the trigger (software triggering)
void setTrigger (void) ;

//Clears the trigger
void resetTrigger (void) ;

//Switches in the RMS measurement chip
void setRmsOn(void) ;

//sSwitches out RMS measurement chip
void setRmsOff (void);

//Sets the A2D module to sequencer mode
void setSequencer (void) ;

//Sets the A2D module to sampler mode
void setSamplerRate (unsigned);

//Set GATELOUT bit of control word high
void gateloutOn (void) ;

//Set GATELOUT bit of control word low
void gateloutOff (void) ;

//Sets timer channel 1 to square-wave input
volid squareWaveTimerl (unsigned) ;

//Initialize the A2D timing using timer 2
void initTiming(unsigned dt);

//Rewind FIFO to beginning of memory
void resetFifo(void);

//Enable FIFO to acquire data
void setFifo(void);

//Returns th state of the fifo
unsigned getFifoStatus(void);

//Returns next data word stored in FIFO
signed getFifoData (void);

//Program timer channel 0 to set the desired interrupt rate
void setIntRate(unsigned intrate);

//Locksout the interupt request line
void intOff (void) ;

//Enables system interuppt request
void intOn(void);

//Sets the trigger level; trigger level (0=-10V, 128=0V, 255=+10V)
void setTriggerlevel (unsigned tl);

106

//Sets falling or rising edge trigger
void setTriggerPosition(unsigned tp);

//Calibrates zero offset error

void zeroOffset (void);

//Grounds the two differential inputs for zero adjust

void grndInput (void) ;

//Ungrounds the two differential inputs

void freelnput (void);

//Adjust the trimmer on the PGA

void zeroAdjust (void);

int chent;
unsigned delta_t;

private:

unsigned ctriw;

unsigned seqgcnt;

unsigned mode_sel;
unsigned mode_acdc;
unsigned samprate;
unsigned sampindex;
unsigned seqgaddr [MAXCHAN] ;
unsigned chan[MAXCHAN];
unsigned gl0[MAXCHAN] ;
unsigned g2 [MAXCHAN];

}i

#endif

0. A2D.CPP
#include "a2d.h"

//ESP A2D Addresses
unsigned BASE DEFBASE;
unsigned FIFO 0x00;
unsigned MEM = 0x00;

unsigned STAT = 0x02;
unsigned COUNT = 0x02;
unsigned TIMERO = 0x04;
unsigned TIMER1 = 0x05;
unsigned TIMER2 = 0x06;
unsigned TIMERC = 0x07;
unsigned CNTL = 0x08;
unsigned DAC = 0x0C;

/7
/7
/7
/7
//
/7
//
//
//
//
/7

//Number of channels to sequence
//period between channels

//Holds A2D Control Register update values
//Sequence Counter

//Single-ended or Differential

//AC/DC Coupling

//Sample Rate in Recurrent Mode

//Which Channel to Sample in Recurrent Mode
//Sequencer Address

//Channel

//x10 Gain

/ /X2 Gain

BASE I/0 ADDR [BASE] ()
FIFO READ ADDR [00-01] (R)
SEQUENCER ADDR {00-01] (W)
STATUS REGISTER [02] (R)
SEQUENCER ADDR PTR [02] (W)
TIMER O [04] (R/W)
TIMER 1 [05] (R/W)
TIMER 2 [06] (R/W)
TIMER CONTROL WORD [07] (R/W)
A2D CONTROL REGISTER [08-09] (W)
DAC DATA [oc] (W)

107

//***

// FUNCTION NAME: a2dClass ()
// AUTHOR: Randy Walker
// DATE: 27 March 1996
// DESCRIPTION: Sets defaults, reads a2d.cfg file, initializes address map
// and hardware
// RETURNS: void
// CALLS: readConfigFile(), initSysAddr(), initHardware ()
// CALLED BY: Object declaration
//***‘k*************
a2dClass: :a2dClass (void)
{

ctrlw=0;

segcnt=1;

mode_sel=0;

mode_acde=1;

delta_t=3;

chent=1;

samprate=0;

sampindex=0;

readConfigFile();

initSysAddr () ;

initHardware () ;

//***

// FUNCTION NAME: readConfigFile ()
// AUTHOR: Randy Walker, based on [MAXUS 95]
// DATE: 27 March 1996
// DESCRIPTION: Reads the a2d.cfg file and sets variables
// RETURNS: void
// CALLS: none
// CALLED BY: a2d class constructor
//***
void a2dClass::readConfigFile()
{
FILE *configFile;
char junk[128};

if ((configFile = fopen("a2d.cfg", "r")) == NULL){
fprintf (stderr, "Cannot open file A2D.CFG...\n");
exit (1) ;

}

fscanf (configFile, "%x%s", &segcnt, junk) ;

if (segcnt==0 |[seqgent>0x0F){ //segcnt must be 1-F (15 max in seq mode)
cout << "\nseqgcnt out of range in A2D.CFG...\n";
exit (1);

}

fscanf (configFile, "%d%s", &mode_sel, junk) ;

if (mode_sel =0 && mode_sel != 1){
cout << "\nmode_sel out of range in A2D.CFG...\n";

108

exit (1) ;

fscanf (configFile, "%d%s", &mode_acdc, junk) ;

if (mode_acdc !=0 && mode_acdc != 1){
cout << "\nmode_acdc out of range in A2D.CFG...\n";
exit (1) ;

fscanf (configFile, "%$x%s", &chent, junk) ;

1f (chcont == I'l chent > 0x0F){ //chent must be 1-F (15 max in seq mode)
cout << "\nchent out of range in A2D.CFG...\n";
exit (1) ;

fscanf (configFile, "%d%s", &delta_t, junk) ;

if (delta_t < 3 || delta_t > 8192)({
cout << "\ndelta_t out of range in A2D.CFG...\n";
exit (1) ;

if (delta_t < 6 && chcnt > 1)
cout << "\ndelta_t must be > 6 for chcnt > 1...\n";
exit (1) ;

fscanf (configFile, "%d%s", &samprate, junk) ;

if (samprate > 7){
cout << "\nsamprate out of range in A2D.CFG...\n":
exit (1) ;

}

fscanf (configFile, "%x%s", &sampindex, junk) ;

if (sampindex > 0x0F) {
cout << "\nsampindex out of range in A2D.CFG...\n";
exit(1l);

for (int i=0;i<seqcnt;i++)
fscanf(configFile,“%X%X%X%x“,&seqaddr[i],&chan[i],&glO[i],&g2[i]);
fclose(configFile);

109

//***

// FUNCTION NAME: initSysAddr ()
// AUTHOR: Randy Walker, based on [MAXUS 95]
// DATE: 27 March 1996
// DESCRIPTION: Sets system address mappings
// RETURNS: void
// CALLS: none
// CALLED BY: a2d class constructor
//**.*************************
void a2dClass::initSysAddr (void)
{

//clear BASE

FIFO &= 0x0F; // FIFO READ ADDRESS [00,01] (R)
MEM &= 0xO0F; // SEQENCER MEM ADDRESS [00,01] (W)
STAT &= 0xO0F; // STATUS REGISTER [(02] (R)
COUNT &= 0xO0F; // SEQENCER ADDRESS PTR [02] (W)
TIMERO &= OxOF; // TIMER 0 [04] (R/W)
TIMER1 &= Ox0F; // TIMER 1 [05] (R/W)
TIMER2 &= 0xOF; // TIMER 2 [061 (R/W)
TIMERC &= OxOF; // TIMER CONTROL WORD [07] (R/W)
CNTL &= 0xO0F; // CONTROL REGISTER [08] (R/W)
DAC &= 0xO0F; // DAC DATA [0C] (W)
//set BASE

FIFO | = BASE; // FIFO READ ADDRESS [00,01] (R)
MEM |= BASE; // SEQENCER MEM ADDRESS [00,01] (W)
STAT |= BASE; // STATUS REGISTER [02] (R)
COUNT |= BASE; // SEQENCER ADDRESS PTR [02] (W)
TIMERO |= BASE; // TIMER 0 [04] (R/W)
TIMER1 |= BASE; // TIMER 1 [05] (R/W)
TIMER2 |= BASE; // TIMER 2 [06] (R/W)
TIMERC |= BASE; // TIMER CONTROL WORD [07] (R/W)
CNTL |= BASE; // CONTROL REGISTER [08] (R/W)
DAC |= BASE; // DAC DATA [0cl (W)

110

//***

//
/7
/7
//
/7
/7
/7
7/
/7
/7

FUNCTION NAME: initHardware()

AUTHOR: Randy Walker, based on [MAXUS 95]

DATE: 27 Maxch 1996

DESCRIPTION: Sets the A2D Control Register to 0020 and sets the
data member, ctrlw=0060; initializes the module setup
for software triggering of the A2D. Programs each
channel.

RETURNS: void

CALLS: outpw()

CALLED BY: a2d class constructor

//***

void a2dClass::initHardware (void)

{

outpw (CNTL, SET_TRG) ;
ctrlw = SET_TRG|RST_TRG;

if (mode_sel == 0)
setSe () ;
else
setDiff () ;
for(int 1 = 0;i < chent;i++){

setChannel (seqgaddr[i],chan[i],gl0[i],g2[i]);
}
setAcDc (mode_acdc) ;
initTiming(delta_t);
setCount (chent) ;

//***

/7
/7
/7
7/
/7
/7
/7
//
//
/7

FUNCTION NAME: printCtrlw()

AUTHOR: Randy Walker, based on [MAXUS 95]

DATE: 27 March 1996

DESCRIPTION: Print A2D control register var, ctrilw.
The variable is used to set a byte in the
ESP A2D control register at BASE + 08h/09h
Used during application code debug

RETURNS: void

CALLS: none

CALLED BY: none

//***‘k*********

void a2dClass::printCtrlw(void)

{

printf ("ctriw: 204x\t", ctrlw);
for (int i=0x00;i<0x10;i++){
printf("%i", ((ctrlw>>0x0F-1) & 1));
if ((i+1)%4==0)
printf (" ");

111

//***

//
/7
/7
//
/7
//
7/
/7

FUNCTION NAME: setSe()

AUTHOR: Randy Walker, based on [MAXUS 95]

DATE: 27 March 1996

DESCRIPTION: Sets ctrlw for single ended mode and writes ctrlw to
A2D Control Register

RETURNS: void

CALLS: outpw()

CALLED BY: initHardware()

//***

void a2dClass: :setSe(void)

{

ctrlw &= ~DIFF;
outpw (CNTL, ctrlw) ;

//***'k*****************

/7
//
//
/7
/7
1/
/7
/7

FUNCTION NAME: setDiff ()

AUTHOR: Randy Walker, based on [MAXUS 95]

DATE: 27 March 1996

DESCRIPTION: Sets ctrlw for differential mode and writes ctrlw to
A2D Control Register

RETURNS: void

CALLS: outpw()

CALLED BY: initHardware()

//**&****************

void a2dClass::setDiff (void)

{

ctrlw |= DIFF;
outpw (CNTL, ctrlw) ;

112

//***

// FUNCTION NAME: setChannel ()

// AUTHOR: Randy Walker, based on [MAXUS 95]

// DATE: 27 March 1996

// DESCRIPTION: Loads sequencer memory with channel data
// CALLS: progSeq(), outpw(), runSeq()

// CALLED BY: initHardware()

// VARIABLES: seq - sequencer number

/7 ch - channel number
// gl0 - x10 gain value
/7 g2 - x2 gain value

//***

void a2dClass::setChannel (unsigned seq,unsigned ch,unsigned gl0,unsigned g2)

{
unsigned 4@ = 0;
setProgSeq() ; // set sequencer program mode
outpw (COUNT, seq) ; // set sequencer address
//load sequencer memory
d |= ch<<8; // channel
d = (g2<<12); // gain X2
d = (gl0<<14); // gain X10
outpw(MEM, Q) ; // load sequencer
setRunSeq() ; // set sequencer run mode
}

//************************'k************-k*******************************

// FUNCTION NAME: setProgSeg()

// AUTHOR: Randy Walker, based on [MAXUS 95]
// DATE: 27 March 1996

// DESCRIPTION: Sets sequencer to program mode
// RETURNS: void

// CALLS: outpw/()

// CALLED BY: setChannel ()

//***’k***

void a2dClass::setProgSeq(void)

{
ctrlw |= PRG_SEQ;
outpw (CNTL, ctrlw) ;

113

//***

// FUNCTION NAME: setRunSeq()
// AUTHOR: Randy Walker, based on [MAXUS 95]
// DATE: 27 March 1996
// DESCRIPTION: Sets sequencer to run mode
// RETURNS: void
// CALLS: outpw()
// CALLED BY: none
//***
void a2dClass::setRunSeqg(void)
{

ctrlw &= ~PRG_SEQ;

outpw (CNTL, ctrlw) ;

//***

// FUNCTION NAME: setCount()

// AUTHOR: Randy Walker, based on [MAXUS 95]

// DATE: 27 March 1996

// DESCRIPTION: Loads sequencer address counter with number of channels
/7 to scan.

// RETURNS: void

// CALLS: outpw(), setProgSeq(), setRunSeq()

// CALLED BY: initHardware ()

// VARIABLES: nch - number of channels to sequence

//***

void a2dClass::setCount (unsigned nch)

{
nch=nch<<4; // put in upper nibble
outpw (COUNT, nch); // out to register
setProgSeq() ; // reset sequencer
setRunSeq() ; // put it in run mode
}

//**-'k**************************

// FUNCTION NAME: setAcDc()

// AUTHOR: Randy Walker, based on [MAXUS 95]
// DATE: 27 March 1996

// DESCRIPTION: Sets AC or DC Coupling

// RETURNS: void

// CALLS: outpw/()

// CALLED BY: initHardware ()

// VARIABLES: acdc - holds coupling value

//***

void a2dClass::setAcDc (unsigned acdc)

{
if (acdc)
ctrlw |= ACDC; // acdc=1 -> DC
else
ctrlw &= ~ACDC; // acde=0 -> AC
outpw (CNTL, ctrlw) ;
}

114

//***

// FUNCTION NAME: lockTrigger ()
// AUTHOR: Randy Walker, based on [MAXUS 95]
// DATE: 27 March 1996
// DESCRIPTION: Prevents triggering
// RETURNS: void
// CALLS: outpw()
// CALLED BY: initSampler ()
//'k**
void a2dClass::lockTrigger (void)
{
ctrlw &= ~RST_TRG;
outpw (CNTL, ctrlw) ;

//***‘k*********************

// FUNCTION NAME: unlockTrigger ()
// AUTHOR: Randy Walker, based on [MAXUS 95]
// DATE: 27 March 1996
// DESCRIPTION: Allow the trigger to function
// RETURNS: void
// CALLS: outpw()
// CALLED BY: readSmaple()
//***
void a2dClass::unlockTrigger (void)
{ -
ctrlw |= RST_TRGI|SET_TRG;
outpw (CNTL, ctrlw) ;

//***

// FUNCTION NAME: setTrigger ()
// AUTHOR: Randy Walker, based on [MAXUS 95]
// DATE: 27 March 1996 ‘
// DESCRIPTION: Toggle the trigger (software triggering)
// RETURNS: void
// CALLS: outpw()
// CALLED BY:readSample ()
//***‘k***************************
void a2dClass::setTrigger (void)
{
outpw (CNTL, ctrlw&~SET_TRGIRST_TRG) ;
outpw (CNTL, ctrlw| SET_TRG|RST TRG) ;

115

//**'k********'k*********

// FUNCTION NAME: resetTrigger()
// AUTHOR: Randy Walker, based on [MAXUS 95]
// DATE: 27 March 1996
// DESCRIPTION: Clears the trigger
// RETURNS: void
// CALLS: outpw()
// CALLED BY: readSample()
//**'k****************
void a2dClass::resetTrigger (void)
{
outpw (CNTL, ctrlw|SET_TRG&~RST TRG) ;
outpw (CNTL, ctrlw|SET_TRG| RST_TRG) ;

//********************************'k************************************

// FUNCTION NAME: setRmsOn()
// AUTHOR: Randy Walker, based on [MAXUS 95]
// DATE: 27 March 1996
// DESCRIPTION: Switches in the RMS measurement chip
// RETURNS: void
// CALLS: outpw()
// CALLED BY: none
//**’k**************
void a2dClass: :setRmsOn(void)
{
ctrlw |= RMS;
outpw (CNTL, ctrlw) ;

//*************************'k***

// FUNCTION NAME: setRmsOff ()
// AUTHOR: Randy Walker, based on [MAXUS 95)
// DATE: 27 March 1996
// DESCRIPTION: Switches out RMS measurement chip
// RETURNS: void
// CALLS: outpw()
// CALLED BY: initSampler()
//************'k**********************'k*********************************
void a2dClass::setRmsOff (void)
{
ctrlw &= ~RMS;
outpw (CNTL, ctrlw) ;

116

//**’k**********************

// FUNCTION NAME: setSequencer ()

// AUTHOR: Randy Walker, based on [MAXUS 95]

// DATE: 27 March 1996

// DESCRIPTION: Sets the A2D module to sequencer mode
// RETURNS: void

// CALLS: outpw/()

// CALLED BY: none

//***

void a2dClass::setSequencer (void)
{

ctrlw |= SAM SEQ;

outpw (CNTL, ctrlw) ;

//**********************************'k'k****'k****************************

// FUNCTION NAME: setSamplerRate()

// AUTHOR: Randy Walker, based on [MAXUS 95]

// DATE: 27 March 1996

// DESCRIPTION: Sets the A2D module to sampler mode
// RETURNS: void

// CALLS: outpw()

// CALLED BY: none

// VARIABLES: rate - sampler rate

//***

void a2dClass::setSamplerRate (unsigned rate)

{
ctrlw &= ~SAM_SEQ; //Set to sampler mode
ctrlw &= CLRRATE; //Clear previous rate to 000
ctrlw [= rate; //Set new rate
outpw (CNTL, ctrlw) ; //Set Control Word
}

//***

// FUNCTION NAME: gateloutOn ()
// AUTHOR: Randy Walker, based on [MAXUS 95]
// DATE: 27 March 1996
// DESCRIPTION: Set GATE1OUT bit of control word high
// RETURNS: void
// CALLS: outpw()
// CALLED BY: none
//***
void a2dClass::gateloutOn(void)
{
ctrlw |= GATE1OUT;
outpw (CNTL, ctrlw) ;

117

//***

//
/7
//
/7
//
//
/7

FUNCTION NAME: gateloutOff ()

AUTHOR: Randy Walker, based on [MAXUS 95]

DATE: 27 March 1996

DESCRIPTION: Set GATEL1OUT bit of control word low
RETURNS: void

CALLS: outpw()

CALLED BY: none

//**'k**************

void a2dClass::gateloutOff (void)

{

ctrlw &= ~GATE1OUT;
outpw (CNTL, ctrlw);

//********'k'k**-k********’k*****‘**

/7
/7
/7
//
//
/7
/7
7/
//
/!
/7
!/

FUNCTION NAME: squareWaveTimerl ()
AUTHOR: Randy Walker, based on [MAXUS 95]
DATE: 27 Marxrch 1996
DESCRIPTION: Sets timer channel 1 to square-wave input
RETURNS: wvoid
CALLS: outp()
CALLED BY: none
VARIABLES: dt-micro seconds per period (1 to 8192)
assuming 8 MHz clock input
ch-timer channel 1
ph-local variable
pl-local variable

//***

void a2dClass::squareWaveTimerl (unsigned dt)

{

char ph,pl;

i

pl (dt*8) &0XFF; // 8 CLOCKS PER uS
ph = (dt*8)>>8;

outp (TIMERC, 0x76) ; // initialize timer
outp (TIMERL,pl); // dt uS delay
outp (TIMER1, ph) ; // with 8 MHz clock

118

//***

// FUNCTION NAME: initTiming()

// AUTHOR: Randy Walker, based on [MAXUS 95]

// DATE: 27 March 1996

// DESCRIPTION: Initialize the A2D timing using timer 2
// RETURNS: void

// CALLS: outp()

// CALLED BY: initHardware ()

// VARIABLES: dt - number of micro seconds (3 to 2730)

//*********************************-k*k'k*********************************

void a2dClass::initTiming(unsigned dt)

{
char ph,pl;
pl = (dt*8)&0xFF; // 8 CLOCKS PER uS
ph = (dt*8)>>8;
outp (TIMERC, 0xB6) ; // initialize timer2
outp (TIMER2,pl) ; // dt uS delay
outp (TIMER2, ph) ; // with 8 MHz clock
3

//***

// FUNCTION NAME: resetFifol()
// AUTHOR: Randy Walker, based on [MAXUS 95] code
// DATE: 27 March 1996
// DESCRIPTION: Rewind FIFO to beginning of memory
// RETURNS: void
// CALLS: outpw()
// CALLED BY: none
//******************‘k*********************‘k****************************
void a2dClass::resetFifo(void)
{

ctrlw &= ~RST_FIFO;

outpw (CNTL, ctrlw) ;

//***

// FUNCTION NAME: setFifo()
// AUTHOR: Randy Walker, based on [MAXUS 95]
// DATE: 27 March 1996
// DESCRIPTION: Enable FIFO to acquire data
// RETURNS: void
// CALLS: outpw()
// CALLED BY: initSampler ()
//***
void a2dClass::setFifo(void)
{

ctrlw |= RST _FIFO;

outpw (CNTL, ctrlw) ;

119

//***

// FUNCTION NAME: getFifoStatus/()

// AUTHOR: Randy Walker, based on [MAXUS 95]

// DATE: 27 March 1996

// DESCRIPTION: Returns FIFO status

// RETURNS: RETURNS: 6 - empty

// 5 - half full
// 1 - full

// CALLS: inpw()

//- CALLED BY: readSample()
//*********'k**********'k**
unsigned a2dClass::getFifoStatus (void)

{
return (inpw(STAT)&7) ;

//***

// FUNCTION NAME: getFifoData/()

// AUTHOR: Randy Walker, based on [MAXUS 95]

// DATE: 27 March 1996

// DESCRIPTION: Returns next data word stored in FIFO

// RETURNS: 16bits of data. Lower 12 are A2D data

// CALLS: inpw()

// CALLED BY: readSample()
//***
signed a2dClass::getFifoData(void)

{
return (inpw(FIFO)&0xO0FFF) ; //Get data and mask upper nibble

//***

// FUNCTION NAME: setIntRate()

// AUTHOR: Randy Walker, based on [MAXUS 95]

// DATE: 27 March 1996

// DESCRIPTION: Program timer channel 0 to set the desired interrupt
// rate

// RETURNS: void

// CALLS: outp()

// CALLED BY: none

// VARIABLES: intrate-micro secs per period (1 to 8192)

// assuming 8 MHz clock input

//***

void a2dClass::setIntRate(unsigned intrate)

{
outp (TIMERC, 0x36) ; // Set timer 0 to mode 3
outp (TIMERO, (intrate*8)&0xFF); // Load Least Significant Byte
outp (TIMERO, (intrate*8)>>8); // Load Most Significant Byte
}

120

//***

// FUNCTION NAME: intOff ()
// AUTHOR: Randy Walker, based on [MAXUS 95]
// DATE: 27 March 1996
// DESCRIPTION: Locksout the interupt request line
// RETURNS: void
// CALLS: outpw()
// CALLED BY: none
//*******************'k***
void a2dClass::intOff (void)
{
ctriw &= ~INT_EN; // INT_EN is active high
outpw (CNTL, ctrlw) ;

//***********************‘k***

// FUNCTION NAME: intOn/{()
// AUTHOR: Randy Walker, based on [MAXUS 95]
// DATE: 27 March 1996
// DESCRIPTION: Enables system interuppt request
// RETURNS: void
// CALLS: outpw/()
// CALLED BY: none
//**'k**************************
void a2dClass::intOn(void)
{
ctrlw |= INT_EN; // INT_EN is active high
outpw (CNTL, ctrlw) ;

/‘/**********************’k**
// FUNCTION NAME: setTriggerLevel ()

// AUTHOR: Randy Walker, based on [MAXUS 95]

// DATE: 27 March 1996

// DESCRIPTION: Sets the trigger level

// RETURNS: void

// CALLS: outp()

// CALLED BY: none

// VARIABLES: tl-trigger level (0=-10V, 128=0V, 255=+10V)
//***
void a2dClass::setTriggerLevel (unsigned tl)

{
outp (DAC,tl);

121

//*********************'k*******'k***************************************

// FUNCTION NAME: setTriggerPosition()

// AUTHOR: Randy Walker, based on [MAXUS 95]

// DATE: 27 March 1996

// DESCRIPTION: Sets falling or rising edge trigger
// RETURNS: void

// CALLS: outpw()

// CALLED BY: none

// VARIABLES: tp: 0=falling, l=rising

//***

void a2dClass::setTriggerPosition(unsigned tp)

{
ctrlw &= ~TRG_POS; //Clear previous TRG_POS
ctrlw |= (tp)?TRG_POS:0; //Evaluate tp and set ctrlw
outp (CNTL, ctrlw) ;

}

//***

// FUNCTION NAME: zeroOffset ()
// AUTHOR: Randy Walker, based on [MAXUS 95]
// DATE: 27 March 1996
// DESCRIPTION: Calibrates zero offset error
// RETURNS: void
// CALLS: outpw()
// CALLED BY: none
//***
void a2dClass: :zeroOffset (void)
{
unsigned d=0,1i,g2,9l0;
float sum;
float offsetErr(4]{4];
float bits[411[4];
unsigned gainsl10[4]
unsigned gains2([4]

{1,10,100,100};
{1, 2, 4, 8};

clrscr();
printf ("\n\tG10\tG2\t OFFSET\t\t BITS");

for(gl0=0;g10<4;gl0++)
for(g2=0;g2<4;g2++)
printf("\n\t%d\t%d\t+X.XXXXXX\t+XX.X“,glO,gZ);

setRmsOff () ;

setAcDc(0);

setSequencer () ;

initTiming(3) ;

setChannel (0,0,g10,g2);

grndInput () ;

delay (5) ; //Let new gain values stabilize

while (tkbhit ()) {

for(gl0=0;g10<4;g10++) {
for(g2=0;g2<4;92++){

122

setChannel (0,0,910,g2);
grndInput () ;
lockTrigger () ;
resetFifo();
setFifo();
unlockTrigger () ;
setTrigger();
delay (1) ;
while (getFifoStatus () !=FULL) ;
lockTrigger () ;

for(i=0,sum=0.0; i<FIFOSIZE;i++) {
d=getFifoData() ;
sum+=(float)d*10/2048;
}
offsetErr[gl0] [g2]=((float) (sum/FIFOSIZE)-10)/
(float) (gains10[gl0] *gains2[g2]);

bits[gl0][g2]=(float) (cffsetErr[gl0] [g2]1*4096/
20*gainsl10[gl0] *gains2[g2]);
}

clrscr():
printf ("\n\tG1l0\tG2\t OFFSET\t\t BITS") ;
for(gl0=0;g10<4;g1l0++){
for(g2=0;g2<4;g2++) {
printf ("\n\t2d\t%d\t%+1.6£\t%+04.1f",g10,g2,
offsetErr{gl0] [g2],bits[gl0][g2]);

}
freeInput();

getch();

//*************'k***

// FUNCTION NAME: grndInput ()
// AUTHOR: Randy Walker, based on [MAXUS 95]
// DATE: 27 March 1996
// DESCRIPTION: Grounds the two diff input for zero adjust
// RETURNS: void
// CALLS: outpw()
// CALLED BY: none
//***‘k***
void a2dClass::grndInput (void)
{
ctrlw |= CAL;
outpw (CNTL, ctrlw) ;

123

//***************************************'k*****************************

//
/7
/7
//
//
/7
//

FUNCTION NAME: freelInput ()

AUTHOR: Randy Walker, based on [MAXUS 95]
DATE: 27 March 1996

DESCRIPTION: Ungrounds the two diff inputs
RETURNS: void

CALLS: outpw()

CALLED BY: none

//********-k**

void a2dClass: :freelnput (void)

{

ctrlw &= ~CAL;
outpw (CNTL, ctrlw) ;

//***

/7
/7
/7
/7
/7
//
//

FUNCTION NAME: zeroAdjust ()

AUTHOR: Randy Walker, based on [MAXUS 95]
DATE: 27 March 1996

DESCRIPTION: Adjust the trimmer on the PGA
RETURNS: void

CALLS: outpw()

CALLED BY: none

//***

void a2dClass: :zeroAdjust (void)

(.

int i;
unsigned 4;
float sum, offsetErr;

clrscr();
printf ("\n\nADJUST THE TRIM POT FOR 0.0 OFFSET\n\n");

setRmsOff () ;
setAcDc(0) ;
setSequencer () ;
initTiming (3);

while (!kbhit ()){
setChannel (0,0,3,3);
grndInput () ;
lockTrigger () ;
resetFifo();
setFifo();
unlockTrigger () ;
setTrigger();
while (getFifoStatus () !=FULL) ;
lockTrigger () ;

for(i=0,sum=0.0;i<FIFOSIZE;i++) {

d=getFifoData();
sum+=(float)d*10/2048;

124

offsetErr=((float) (sum/FIFOSIZE)-10)/8000.0;

printf ("\tTHE MEASURED DC OFFSET IS: %+8.6f\r",offsetErr);

freeInput () ;
getch();

P. A2D.CFG

;segcnt :number_of_seq addresses_to_load

;mode_sel:_ DIFF=1__ _SE=0

;mode_acdc:_Signal coupling_select_ DC=1__ AC=0

;chent . Number_of_channels_to_sequence_ (hex,_1-F)

125 ;delta_t: _Chan_to_Chan_Sample_rate_in_microsecs_3-8192 = 1/Hz*chcnt
;samprate:_ Sample_rate_in_recurrent_mode_ 0 (fast)-7 (slow)
;sampindex:_Which_channel_to_sample_in_recurrent_mode

0 0

H oW WO T WNREFOONWOwR O

NN DDNDNNOMNDNDNNOOO OO OO OO
OO O OO ODODOOOOO OO OO

125

126

APPENDIX B: Serial Port Communications Source Code (C++)

A. GLOBALS.H

#ifndef __GLOBALS_H
#define ___GLOBALS_H

// types
typedef
typedef
typedef

#define
#define

unsigned char BYTE;

unsigned short WORD;

unsigned long DWORD;

MEM (seg,ofs) (*((BYTE far*)MK_FP(seg,ofs)))
MEMW (seg, ofs) (* ((WORD far*)MK_FP(seqg,ofs)))

enum Boolean {FALSE, TRUE};

// basic
#define
#define
#define
#define
#define

bit twiddles

set (bit)
setb(data, bit)
clrb(data,bit)
setbit (data,bit)
clrbit(data, bit)

// specific to ports

#define
#define

#endif

setportbit (reg, bit)
clrportbit (reg,bit)

(1<<bit)

data
data
data
data

outportb(reg, setb(inportb(reg),bit))
outportb(reg, clrb(inportb(reg),bit))

I
&

set (bit)
lset (bit)
setb(data, bit)
clrb(data, bit)

127

B. BUFFER.H

#ifndef _ BYTEBUFFER_H
#define _ BYTEBUFFER_H

#include "toetypes.h"

#define BYTEBUFSIZE 32

/**

CLASS:Buffer

AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION:Base class for use as a polymorphic reference in the serial port code

which defines a buffer to be used in serial port communications.
**/

class Buffer ({
public:

//Constructor
Buffer (WORD sz) : getPtr(0), putPtr(0), size(sz) ()}

//Checks for the arrival of new characters in the buffer
virtual Boolean hasbData(){ return Boolean (putPtr !=
getPtr); }

//How much of the Buffer is used (rounded percentage
//0 - 100)

virtual int capacityUsed() ;

//Read from the buffer

virtual Boolean Get (BYTEL) = 0:

//Read to the buffer

virtual void AJdd(BYTE) = 0;

protected:

//Increment the pointer to next position
void inc(WORD& index) { if (++index == size) index = 0;)}

//Decrement the pointer
WORD before (WORD index) { return ((index == 0) ? size - 1 :
index - 1);}

WORD getPtr, //Location of unread data
putPtr, //Location to read data to
size; //8ize of the buffer in bytes

128

/*****************'k***

Defines a single buffer of a specified size for buffering charaters
received via serial port.
**/

class byteBuffer : protected Buffer (
public:

byteBuffer (BYTE sz=BYTEBUFSIZE) ;
~byteBuffer () { delete [] buf; }

Buffer::hasData;
Buffer::capacityUsed;

// buffer extraction
Boolean Get (BYTES) ;

// buffer insertion

void Add(BYTE ch);
void Add (const char*);
byteBuffer& operator += (BYTE ch){ Add(ch); return *this;
}
protected:

BYTE* buf;

}i

#endif

C. BUFFER.CPP

#include <iostream.h>
#include <stdio.h>

#include "globals.h"
#include "buffer.h"

//**

// Buffer

//**

// Returns the percentage of the buffer in use

int -
Buffer: :capacityUsed()
{
int cap = (putPtr + size) % size - getPtr;

return 100 * cap / size;

129

//**

// byteBuffer
//**
//Constructor, instantiates a buffer
byteBuffer: :byteBuffer (BYTE sz) : Buffer(sz)
{

buf = new BYTE[size];

//Reads a charcter from the buffer
Boolean
byteBuffer: :Get (BYTE& data)
{
if (hasData()) {
data = buf[getPtr];
inc{getPtr) ;
return TRUE;
}
return FALSE;
}

//Writes a character to the buffer and checks for buffer overflow
void
byteBuffer: :Add(BYTE ch)
{

buf [putPtr] = ch;

inc (putPtr) ;

if (lhasData()) ({ // 1f there's no data after adding data,

// it overflowed
cerr << "\nError: byteBuffer overflow\n";

}

//Writes a character to the buffer
void)
byteBuffer::Add(const char* s)

{

while (*s)
Add(*s++) ;

130

D. GPSBUFF.H

ifndef __ GPSBUFF_H
#define __ GPSBUFF_H

#include "buffer.h"
#include "toetypes.h"

#define GPSBLOCKS 4
#define LINE_FEED 10
#define CARR_RETURN 13

/*************************'k***************************************

Class buffers GPS position messages via serial port communications.

Uses a multiple buffer system in which each buffer is capable of holding a
single position message. Buffers are filled and processed sequentially in a
round robin fashion. Messages are checked for validity only upon attempted

public:

class GPSbuffer

reads from the buffer.
*************’***/

public Buffer {

GPSbuffer (BYTE GPSblocks=GPSBLOCKS) ;
~GPSbuffer() {delete [] block;}

Boolean hasDatal(); // a complete structure is ready

Boolean Get (BYTE&) {return FALSE;}

Boolean Get(GPSdata); // get a complete structure filled in

void Add (BYTE ch); // build the structure as each byte

// is added

protected:

Boolean validHeader (GPSdata); // check a block for wvalid

// header
GPSdata *block; // hold the buffered GPS data
WORD current, // the current GPS block in use
last; // the last GPS block in use

BYTE *putPlace; // place to put the next charater received
}i
#endif

131

E. GPSBUFF.CPP

#include <iostream.h>
#include <stdio.h>

#include "gpsbuff.h®

/**

PROGRAM:GPSbuffer (Constructor)

AUTHOR:Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION:Allocates message buffers, indicate that no data has
beenreceived by equalizing current and last and set position

into which initial character will be read.

RETURNS:nothing.

CALLED BY:navigator class (nav.h)

CALLS:none.

**/

GPSbuffer: :GPSbuffer (BYTE GPSblocks)
current (0), last(0),
Buffer (GPSblocks) // Call to base class constructor

block = new GPSdata[GPSblocks]; //Create an array of GPSdata
//elements
putPlace = &(block[current][0]); //Set the place for the

// first character

132

/**

PROGRAM:GPSbuffer: :Add

AUTHOR:Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION:Interrupt driven routine which writes incoming characters into the
gps buffers

RETURNS:nothing.

CALLED BY: interupt driven by bufferedSerialPort

CALLS:none.

**/

void
GPSbuffer::Add(BYTE data) {

static BYTE lastChar(data); //Holds last for <cr> <1f> detection
static Boolean 1fFlag = FALSE; //True when message end is detected

//Is a new message starting?

if (1lfFlag && (data == '@')) {
last = current; // Set last to buffer with newest message.
inc (current) ; // Set current to the next buffer

// Set putPlace to the beginning of the next buffer.
putPlace = &(block[current] [0]);
1fFlag = FALSE; // reset for end of next message.

*putPlace++ = data;// Write character into the buffer.

//Has the end of a message been received?
if ((lastChar == CARR_RETURN) &&

(data == LINE_FEED)) {

1fFlag = TRUE;
}

lastChar = data; //Save last character for <cr> <1f> detection

133

/********************************'k*******************************

PROGRAM:GPSbuffer: :Get
AUTHOR:Eric Bachmann, Dave Gay
DATE:11 July 1995
FUNCTION:Checks to see if a
new message has arrived, copies it into the
input argument data and returns a flag to indicate whether a
newmessage was received.
RETURNS:TRUE, if a new valid position has been received.
FALSE, otherwise
CALLED BY:navPosit (nav.cpp)
initializeNavigator (nav.cpp)
CALLS :GPSbuffer: :hasbhata

*****************************’k****-k***********’k*****************/

Boolean
GPSbuffer: :Get (GPSdata data)
{
// Has a new valid message been received.
if (hasDatal()) {
// Copy the message out of the buffer.
memcpy (data, block + last, GPSBLOCKSIZE) ;
// Indicate that this message has been read.
last = current;
return TRUE;
}
else {
return FALSE;

134

/**'k************'k**

PROGRAM:GPSbuffer: :hasData

AUTHOR:Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION:Determines whether a new message has been received and
checks to see if it has a valid header.

RETURNS:TRUE, if a new valid message has been received.

CALLED BY: GPSbuffer::Get (buffer.cpp)

CALLS: validHeader (buffer.cpp)

**/

Boolean
GPSbuffer: :hasData ()
{

// Has a new message with a valid header been received
if (last != current) ¢
if (validHeader (block[last])) {(
return TRUE;

}
else {

return FALSE;
}

}
return FALSE;

/**

PROGRAM:validHeader

AUTHOR:Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION:Checks to see if a message has the proper header for a
Motorola position message. (@Q@Ea)

RETURNS:TRUE, if the header is valid. FALSE, otherwise.

CALLED BY:GPSbuffer::hasData (buffer.cpp)

CALLS:none.

COMMENTS :

**/

Boolean
GPSbuffer: :validHeader (GPSdata dataPtr)
{

if ((dataPtr[0] == '@') && (dataPtr([l] == '@') &&
(dataPtr([2] == ‘'E') &&
(dataPtr[3] == 'a')) ¢
return TRUE;
3
else {
return FALSE;
}

135

F. PORTBANK.H

#ifndef __ PORTBANK_H
#define __ PORTBANK_H

#include "serial.h"
#include "buffer.h"

/**

CLASS :portBank

AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION:Manages up to four bufferdSerialPort instances.

**/

class portBank {
public:
portBank () ;
~portBank () { cleanup(); }
bufferedSerialPort& Init (COMport portnum, BYTE irq,
BaudRate, ParityType, BYTE wordlen, BYTE stopbits,
handShake, Buffer&);

void cleanup();

friend IntHandlerType COMlhandler, COM2handler,
COM3handler, COM4dhandler;

protected:

bufferedSerialPort* ports[4];

extern portBank COMports;

#endif

136

G. PORTBANK.CPP

#include <iostream.h>

#include "serial.h"
#include "buffer.h*
#include "portbank.h"

portBank COMports;

// Constructor, sets up array of ports
portBank: :portBank ()
{
for (int 1 = 0; 1 < 4; i++)
ports[i] = 0;

// Resets all ports to the original parameters
void
portBank: :cleanup ()
{
for (int i=0; i<4; i++)
delete ports[i];

// Initializes a serial port based up the input arguments
bufferedSerialPort& _
portBank: :Init (COMport portnum, BYTE irg, BaudRate baud, ParityType parity,
BYTE wordlen, BYTE stopbits, handShake shake, Buffers buf)
{
int index = BYTE(portnum) - 1;
if (ports[index])
delete ports[index];
ports[index] = new bufferedSerialPort (portnum, irg, baud,
parity,wordlen, stopbits, shake, buf) ;
return *ports([index];

// Three specific interrupt handlers which map each interupt to ///the
proper ISR.
void
interrupt
COMlhandler(...)
{
COMports.ports[0] ->processInterrupt () ;
EOI;

void

interrupt

COM2handler(...)

{
COMports.ports{l]->processInterrupt () ;
EOI;

137

)

void

interrupt

COM3handler(...)

{
COMports.ports[2]->processInterrupt () ;
EOI;

}

void

interrupt

COM4handler(...)

{
COMports.ports[3]->processInterrupt () ;
EOI;

H. SERIAL.H

#ifndef __ SERIAL_H
#define __SERIAL_H

#include <dos.h>
#include <stdio.h>
#include "globals.h"
#include "buffer.h"

// user defines
#define ALMOST_ FULL 80 // % full to turn off DTR

// leave the following alone - hardware specific

enum COMport {coM1=1, COM2, COM3, COM4};

enum BaudRate {b300, bl200, b2400, b4800, b9600};
enum ParityType {ERROR=-1, NOPARITY, ODD, EVEN)};
enum handShake {NONE, RTS_CTS, XON_XOFF};

enum Shake {off, on};

enum interruptType {rx_rdy, tx_rdy, line_stat, modem_stat};

#define BIOSMEMSEG 0x40

#define DLAB 0x80
#define IRQPORT 0x21
#define EOI outportb(0x20, 0x20)

#define COMlbase MEMW (BIOSMEMSEG, 0)
#define COM2base MEMW (BIOSMEMSEG, 2)

#define COM3base 0x03e8
#define COM4dbase 0x02e8
#define TX (portBase)
#define RX (portBase)
#define TIER (portBase+1)

138

#define TIIR (portBase+2

)
#define LCR (portBase+3)
#define MCR (portBase+4)
#define LSR (portBase+b)
#define MSR (portBase+6)

#define LO_LATCH (portBase)
#define HI_LATCH (portBase+l)

/**
CLASS:serialPort
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay
DATE:11 July 1995
FUNCTION: Defines a simple serial port.

**/

class serialPort {
public:

serialPort (COMport port, BaudRate, ParityType, BYTE wordlen,
BYTE stopbits, handShake) ;

Boolean Send (BYTE data);
Boolean Get (BYTE& data);

inline Boolean dataReady () ;
Boolean statusChanged()
{ return Boolean((ifportbit(MSR,0) || ifportbit (MSR,1)));)

// the rest are only if handshake is specified as RTS_CTS

Boolean isCTSon ()) { return ifportbit(MSR,4); }
Boolean isDSRon () { return ifportbit (MSR,5); }
void setDTRon () { setportbit (MCR,0); }
void setDTRoff () { clrportbit (MCR,0); }
void toggleDTR() ;
void setRTSon () { setportbit (MCR,1); }
void setRTSoff () { clrportbit (MCR,1); }
void toggleRTS () ;
protected:

WORD portBase;
handShake ShakeType;
Shake DTRstate,

RTSstate;
inline Boolean ifportbit (WORD, BYTE);
inline void toggle (Shake&) ;

¥
139

// this is the type for a standard interrupt handler
typedef void interrupt (IntHandlerType) (...);

/**

CLASS:bufferedSerialPort

AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION: Defines a buffered serial port which is interrupt driven

on receive, and buffers all incoming characters in the specified buffer
**/

class bufferedSerialPort : public serialPort {
public:

bufferedSerialPort (COMport portnum, BYTE irqg, BaudRate,
ParityType, BYTE wordlen, BYTE stopbits, handShake, Buffers&);

~bufferedSerialPort () ;

Boolean Get (BYTE& data) ; // buffered version
protected:

Buffer& buf;

BYTE irgbit,//Value to allow enable PIC interrupts for COM port
origirq, //keep the original value of the 8259 mask register
comint;

void processInterrupt(); // buffers the incoming character

IntHandlerType *origcomint;// keep the original vector for
//restoring later

// this allows the actual handlers to access processInterrupt ()
friend IntHandlerType COMlhandler, COM2handler, COM3handler,
COM4handler;
¥

#endif

140

L. SERIAL.CPP

#include <iostream.h>
#include <stdio.h>
#include "serial.h®

/**

Usage Note: Because of the interrupt handlers used, you MUST call your
bufferedSerialPort objects portl, port2, or port3, so the

right handler gets called and can properly service the interrupt.
’k*****/

/**

PROGRAM: serialPort (Constructor)
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay
DATE:11 July 1995
FUNCTION:
Initializes the one of the Serial Ports.
1) Determines the base I/0 port address for the given COM port
2) Sets the 8259 IRQ mask value
3) Initializes the port parameters - baud, parity, etc.
4) Calls the routine to initialize interrupt handling
5) Enables DTR and RTS, indicating ready to go

**/

serialPort::serialPort (COMport port, BaudRate speed, ParityType parity, BYTE
wordlen, BYTE stopbits, handShake hs)
DTRstate(off), RTSstate(off), ShakeType (hs)

switch (port) {

case COMl: portBase = COMlbase;
break;
case COM2: portBase = COM2base;
break;
case COM3: portBase = COM3base;
break;
case COM4: portBase = COM4base;
break;
} //switch
const WORD bauddiv[] = {0x180, 0x60, 0x30, 0x18, 0xC);
// Change 1
outportb (IER, 0); // disable UART interrupts

(void) inportb (LSR) ;

(void) inportb (MSR) ;

(void) inportb (IIR) ;

(void) inportb (RX) ;

outportb(LCR, DLAB) ; //set DLAB so can set baud rate(read only
// port)

outportb (LO_LATCH, bauddiv[speed] & OxFF);

outportb (HI_LATCH, (bauddiv[speed] & O0xFF00) >> 8);

setportbit (MCR, 3) ; //turn OUT2 on

BYTE opt = 0;

141

if (parity != NOPARITY) {
setbit (opt, 3); // enable parity
if (parity == EVEN) // set even parity bit. if odd, leave bit 0
setbit (opt, 4);
}
// now set the word length. len of 5 sets both bits 0 and 1 to
// 0, 6 sets to 01, 7 to 10 and 8 to 11
opt |= wordlen-5;
opt |= --stopbits << 2;
outportb (LCR, opt) ;

if (ShakeType == RTS_CTS) {
setDTRon () ;
setRTSon () ;

/**

PROGRAM: Get

AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION:Gets a byte from the port. Returns true if there's one there, and
fills in the byte parameter. If theres no character, the parameter is left alone,

and false is returned
**/

Boolean
serialPort: :Get (BYTE& data)
{
if (dataReady()) ({ //make sure there's a char there
data = inportb(RX) ; //read character from 8250
return TRUE;
}
else

return FALSE;

142

/'k***

PROGRAM: Send

AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION:Outputs a single character to the port. Returns Boolean

status indicating whether successful
**/

Boolean
serialPort: :Send (BYTE data)
{
while (! (ifportbit(LSR,5))) // wait until THR ready
; // NULL statement

switch (ShakeType) ({
case NONE:
outportb (TX, data) ;
return TRUE;
case RTS_CTS:
if (isCTSon () && isDSRon()) {
outportb (TX,data) ;
return TRUE;
}
else return FALSE;
case XON_XOFF:
default:
// add this later if needed
break;
}
return FALSE;

143

/**

PROGRAM: dataReady

AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION:Checks port to see if a character has arrived.

**/

inline
Boolean
serialPort::dataReady ()
{
/*
if (ifportbit(LSR,1)) {
cerr <<"\nOverrun Error\n';
}
if (ifportbit(LSR,2)) {
cerr <<"\nParity Error\n';
}
if (ifportbit(LSR,3)) {
cerr <<"\nFraming Error\n";

*/
return ifportbit (LSR,0);

/**

PROGRAM: ifportbit

AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay
DATE:11 July 1995

FUNCTION:

**********************‘k***/

inline
Boolean
serialPort::ifportbit (WORD reg, BYTE bit)
{
BYTE on = inportb(reqg);
on &= set(bit);
return Boolean({on == set(bit));

144

/**

PROGRAM: toggleDTR

AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION: toggles Data Transmit Ready if RTS_CTS is off

**/

void
serialPort::toggleDTR()
{
if (ShakeType != RTS_CTS)
return;
if (DTRstate == off)
setDTRon () ;
else

setDTRoff () ;
toggle (DTRstate) ;

/**

PROGRAM: toggleRTS

AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION: toggle Ready to Send (RTS) if RTS_CTS is on.

**/

void
serialPort::toggleRTS ()
{
if (ShakeType != RTS_CTS)
return;
if (RTSstate == off)
setRTSon () ;
else

setRTSoff () ;
toggle (RTSstate) ;

/**

PROGRAM: toggle

AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay
DATE:11 July 1995

FUNCTION: toggles value of the input wvariable

**/

inline
void
serialPort::toggle (Shake& h)
{
if (h == off)
h = Oh;
else
h = off;

145

//******************}***

// bufferedSerialPort
//**************************’k************************************

/**’k***********

PROGRAM:bufferedSerialPort (Constructor)
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay
DATE:11 July 1995
FUNCTION:
Initializes the interrupts for the Serial Port.

1) takes over the original COM interrupt
2) sets the port bits, parity, and stop bit
3) enables interrupts on the 8250 (async chip)
4) enables the async interrupt on the 8259 PIC

**/

bufferedSerialPort: :bufferedSerialPort (COMport portnum, BYTE irg,
BaudRate baud, ParityType parity, BYTE wordlen,
BYTE stopbits, handShake hs, Buffer& b)
: serialPort (portnum, baud, parity, wordlen, stopbits, hs),
buf (b), irgbit(irqg), comint (irgbit+8)

if (ShakeType == RTS_CTS) { // turn it off first, because it
// was enabled
setDTRoff () ; // in the base class

setRTSoff () ;
}

origcomint = getvect(comint); //remember the original vector

switch (portnum) {

case COMl:
setvect (comint,COMlhandler); //point to the new handler
break;

case COM2:
setvect (comint,COM2handler); //point to the new handler
break;

case COM3:
setvect (comint,COM3handler); //point to the new handler
break;

case COM4:
setvect (comint,COM4handler); //point to the new handler
break;

}

// setportbit (MCR,3); //turn OUT2 on
disable(); // disable all interrupts - critical section
setportbit (IER, rx_rdy) ; //enable ints on receive only
origirg = inportb(IRQPORT) ; //remember how it was
clrportbit (IRQPORT, irgbit) ; //enable COM ints
if (ShakeType == RTS_CTS) ({

setDTRon () ;
setRTSon () ;
}

146

-

enable () ;
EOI;

/**

PROGRAM: ~bufferedSerialPort

AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay

DATE:11 July 1995

FUNCTION:

Resets the interrupts. 1) disables the 8250 (async chip)
2) disables the interrupt chip for async int
3) resets the 8259 PpIC

**/

bufferedSerialPort::~bufferedSerialPort ()

{
setvect (comint, origcomint) ; //set the interrupt vector back
outportb(IER,0) ; //disable further UART interrupts
outportb (MCR, 0) ; //turn everything off
outportb (IRQPORT, origirq) ;
EOI;

}

/***‘k****
PROGRAM: Get
- AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay
DATE:11 July 1995
FUNCTION: Calls Get base on buffer type

********’k***/

Boolean
bufferedSerialPort::Get (BYTE& data)

{
return buf.Get (data);

/**‘k************‘k**********

. PROGRAM: processInterupt
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay
DATE:11 July 1995
FUNCTION: Calls the ISR based upon buffer type

'k*/

void
bufferedSerialPort: :processInterrupt ()
(:
if (dataReady()) { - //make sure there's a char there
BYTE data = inportb(RX); //read character from 8250

buf .Add (data) ;
if (ShakeType == RTS_CTS && buf.capacityUsed() > ALMOST FULL)
setDTRoff () ;

147

/**

PROGRAM: showPorts
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay
DATE:11 July 1995
FUNCTION: Prints interupt vector addresses

**/

int

showPorts ()

{

BYTE* p = (BYTE*)COM2base;

p += 5;

fprintf (stderr, "% Y, *p++) ;

fprintf (stderr, "$X\n", *p++) ;
fprintf (stderr, "IRQPORT = %X", inportb(IRQPORT));
return 0;

148

J. COMPBUFF.H

#ifndef __ COMPBUFF_H
#define __ COMPBUFF_H

#include "buffer.h®
#include "toetypes.h"

#define COMPBLOCKS 8
#define LINE_FEED 10
#define CARR_RETURN 13

/***’k***********

Class buffers COMPASS messages received via serial port communications.
Uses a multiple buffer system in which each buffer is capable of

holding a

single message. Buffers are filled and processed

sequentially in a round robin fashion. Messages are checked for validity

only upon

attempted reads from the buffer.

*********************'k****************‘k**********************************/

class compBuffer : public Buffer ¢

public:

compBuffer (BYTE compBlocks=COMPBLOCKS) ;
~compBuffer () {delete [] block;}

Boolean
Boolean
Boolean
void

protected:
Boolean

compData
WORD

BYTE
Y

#endif

hasData() ; // a complete structure is ready

Get (BYTE&) {return FALSE;} //Satisfy inheritence requirements
Get (compData); // get a complete structure filled in

Add(BYTE ch); // build the structure as each byte is added

validHeader (compData); // check a block for valid header

*block; // Pointer to array of compass messages
current, // the current comp block in use

last; // the last comp block in use

*putPlace; // place to put the next charater received

149

K. COMPBUFF.CPP

#include <iostream.h>
#include <stdio.h>

#include "compbuff.h”

/***

PROGRAM: compBuffer (Constructor)

AUTHOR:Eric¢ Bachmann, Randy Walker

DATE:28 April 1996

FUNCTION:

Allocates message buffers, indicates that no data has been
received by equalizing current and last and sets the position
into which initial character will be read.

RETURNS :nothing.

CALLED BY:compass class (compass.h)

CALLS:none.

***/

compBuffer::compBuffer (BYTE compBlocks) :
current (0), last(0),
Buffer (compBlocks) //Call to constructor of the base class

block = new compData[compBlocks]; // Create an array of message buffers
putPlace = &(block[current][0]); // Set position for first character

150

/***

PROGRAM: compBuffer: :Add

AUTHOR:Eric Bachmann, Randy Walker

DATE:28 April 1996

FUNCTION:

Interrupt driven routine which writes incoming characters
into the coompass message buffers

RETURNS :nothing.

CALLED BY: interupt driven by bufferedSerialPort
CALLS:none.

'k***********’k****************‘k*******-k'k*********************'k************/

void
compBuffer: :Add(BYTE data) {

static Boolean 1fFlag = FALSE; //True, if message end detected
static int messageCount(0); // Counts characters in current message

//Is a new message starting?

if (1fFlag && (data == '$')) {
last = current; // Set last to buffer with newest message.
inc(current) ; // Set current to the next buffer

// Set putPlace to the beginning of the next buffer.
putPlace = &(block[current][0]);

1fFlag = FALSE; // reset for end of next message.

}

*putPlace++ = data;// Write character into the buffer.
messageCount++;

//Has the end of a message been received (<cr><1f>)?
if (data == LINE_FEED) ({

1fFlag = TRUE;

}

151

/***

PROGRAM: compBuffer: :Get

AUTHOR:Eric Bachmann, Randy Walker

DATE:28 April 1996

FUNCTION:

Checks to see if a new message has arrived, copies it into the

input argument data and returns a flag to indicate whether a new
message was received.

RETURNS:TRUE, if a new valid position has been received.
FALSE, otherwise

CALLED BY: compass.cpp

CALLS:compBuffer: :hasbhata

**************************'k**/

Boolean
compBuffer: :Get (GPSdata data)
{
// Has a new valid message been received.
if (hasData()) {
// Copy the message out of the buffer.
memcpy (data, block + last, COMPSIZE) ;
// Indicate that this message has been read.
last = current;
return TRUE;
}
else {
return FALSE;

152

/********************‘k**

PROGRAM: compBuffer: :hasData

AUTHOR:Eric Bachmann, Randy Walker

DATE:28 April 1996

FUNCTION:

Determines whether a new message has been received and checks
to see if it has a valid header.

RETURNS:TRUE, if a new valid message has been received.

CALLED BY: compBuffer: :Get

CALLS: validHeader (compBuffer.cpp)

******-k***********’k**/

Boolean
compBuffer: :hasData ()
{
if ((last != current) && (validHeader (block[last]))) ({
return TRUE;
}
else {
return FALSE;

i*****************’k'k'k***
PROGRAM:validHeader
AUTHOR:Eric Bachmann, Randy Walker
DATE:15 May 1996
FUNCTION:
Checks to see if a message has the proper header for a compass
message. ($C)
RETURNS:TRUE, if the header is valid. FALSE, otherwise.
CALLED BY:compBuffer::hasData
CALLS:none.
COMMENTS :

***/

Boolean
compBuffer::validHeader (compData dataPtr)

{

if ((dataPtr[0] == '$§') &&
(dataPtr[l] == 'C')) {

return TRUE;

}

else {

return FALSE;
3

153

154

LIST OF REFERENCES

Bachmann, E.R. and Gay, D., “Design and Evaluation of an Integrated GPS/INS System
for Shallow-water AUV Navigation (SANS),” Master’s Thesis, Naval Postgraduate
School, Monterey, California, September, 1995.

Bachmann, E.R., McGhee, R.B., Whalen, R.H., Steven, R., Walker, R.G., Clynch, IR,
Healey, A.J., and Yun, X.P., “Evaluation of an Integrated GPS/INS System for Shallow-
Water AUV Navigation (SANS),” Proceedings of the Symposium on Autonomous
Underwater Vehicle Technology, Monterey, California, June, 1996.

Bergem, O., “A Multibeam Sonar Based Positioning System for an AUV,” Proceedings of
the 8th International Symposium on Unmanned Untethered Submersible Technology,
Durham, New Hampshire, September 27-29 1993, pp. 291-299.

Bowditch, N., American Practical Navigator, Vol. 1 and 2, Defense Mapping Agency
Hydrographic/Topographic Center, 1984.

Brown, R.G and Hwang, P.Y.C., Introduction to Random Signals and Applied Kalman
Filters, 2nd Edition, John Wiley and Sons, New York, 1992.

Brutzman, D.P., Bumns, M., Campbell, M., Davis, D.T,, Healey, A.J., Holden, M.,
Leonhardt, B., Marco, D., McClarin, D., McGhee, R.B. and Whalen, R.,“NPS Pheonix
AUV Software Integration and In-Water Testing,” Proceedings of the Symposium on
Autonomous Underwater Vehicle Technology, Monterey, California, June, 1996.

Cox, 1J. and Wilfong, G.T., Autonomous Robot Vehicles, Springer-Verlag, New York,
1990.

DATEL BWR Series Data Sheet, DATEL, Inc., September, 1993.

Frequency Devices DP74 Series Data Sheet, Frequency Devices, January, 1996.

Grose, B.L., “The Application of the Correlation Sonar to Autonomous Underwater
Vehicle Navigation,” Proceedings of the 1992 Symposium on Autonomous Underwater

Vehicle Technology, IEEE Oceanic Engineering Society, June 2-3 1992, Washington, D.C.,
pp- 298-303.

Healey, A.J. “Evaluation of the NPS PHOENIX Autonomous Underwater Vehicle Hybrid
Control System,” Proceedings of ACC’95 Conference, Seattle, Washington, June, 1995.

155

Healey, A.J. and Lienard, D., “Multivariable Sliding Mode Control for Autonomous Diving
and Steering of Unmanned Underwater Vehicles,” IEEE Journal of Oceanic Engineering,
vol. 18 no. 3, July, 1993.

Kwak, S.H., Stevens, C.D., Clynch, J.R., McGhee, R.B., and Whalen, RH., “An
Experimental Investigation of GPS/INS integration for Small AUV Navigation,”
Proceedings of the 8th International Symposium on Unmanned Untethered Submersible
Technology (UUST), September 27-29 1993, Durham, New Hampshire, pp. 239-251.

Leu, C.T., Chao, J.J., and Lee, T.S., “GPS Based Underwater Positioning - A System
Design,” Proceedings of The Institute of Navigation GPS-93, Salt Lake City, Utah,
September 22-24 1993, pp. 745-754.

Logsdon, T., The Navstar Global Positioning System, Van Nostrand Reinhold, New York,
1992.

Matthews, M.B., “A Description of the Hardware and Software Interface to the Systron-
Donner MotionPak Inertial Sensor Unit for ROV Tiberon,” Monterey Bay Aquarium
Research Institute Internal Correspondence, Monterey Bay Aquarium Research Institute,
March 6, 1995.

MAXUS E.S.P 386sx/486slc Scamp II User’s Manual, Maxus Electronics Corp., July, 1995.

McGhee, R.B., Clynch, J.R., Healey, S.H., Kwak, S.H., Brutzman, D.P., Yun, X.P., Norton,
N.A., Whalen, R.H., Bachmann, E.R., Gay, D.L. and Schubert, W.R., “An Experimental
Study of an Integrated GPS/INS System for Shallow-Water AUV Navigation (SANS),”
Proceedings of the Ninth International Symposium on Unmanned Untethered Submersible
Technology (UUST), September 25-27 1995, Durham, New Hampshire.

McKeon, I.B., Integration of GPS into a Small Underwater Navigation System, Master’s
Thesis, Naval Postgraduate School, Monterey, California, March, 1992.

Nagengast, S., Correction of Inertial Measurements Using GPS Update for Underwater
Navigation, Master’s Thesis, Naval Postgraduate School, Monterey, California, March
1992, pp. 4-6.

Norton, N.A., Evaluation of Hardware and Software for a Small Autonomous Underwater
Vehicle Navigation System (SANS), Master’s Thesis, Naval Postgraduate School,
Monterey, California, September, 1994,

Oncore User’s Guide, Motoraola Inc., August 1995.

156

Parkinson, B.W., “Overview,” Global Positioning System, Vol. 1, The Institute of
Navigation, Washington, D.C., 1980, pp. 1-2.

Schubert, W.R. and Whalen, R.H., “Design and Implementation of an Integrated GPS/INS
System for Shallow-Water AUV Navigation,” Technical Report No. CS-95-003, Naval
Postgraduate School, Monterey, California 93943, July, 1995.

Souen, K., and Nishida, T., “The World’s Smallest 8-Channel GPS Receiver,” Proceedings
of The Institute of Navigation GPS-92, Albuquerque, New Mexico, September 16-18 1992,
pp. 707-713.

Systron-Donner Model MP-GCCCQAAB MotionPaK IMU, Systron-Donner, Inc.,
Concord, California.

TCM?2 Electronic Compass Module User’s Manual, Precision Navigation, Inc., June, 1995.

Tuohy, S.T., Patrikalakis, N.M., Leonard, J.J., Bellingham, J.G., and Chryssostomidis, C.,

“AUV Navigation Using Geophysical Maps with Uncertainty,” Proceedings of the 8"
International Symposium on Unmanned Untethered Submersible Technology (UUST),
Durham, New Hampshire, September 27-29 1993, pp. 265-276.

Wooden, W. H., “NAVSTAR Global Positioning System: 1985,” Proceedings of the First
International Symposium on Precise Positioning with the Global Positioning System, April
1985, pp. 23-32.

Youngberg, J.W., “A Novel Method for Extending GPS to Underwater Applications,”
NAVIGATION, Journal of The Institute of Navigation, vol. 38, no. 3, Fall 1991.

Yuh, J., Underwater Robotic Vehicles: Design and Control, TSI Press, Albuquerque, New
Mexico, 1995.

157

158

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library

Naval Postgraduate School
411 Dyer Rd.

Monterey, CA 93943-5101

Director, Marine Corps Research Center
MCCDC, Code C40RC

2040 Broadway Street

Quantico, VA 22134-5107

Director, Studies and Analysis Division
MCCDC, Code C45

3300 Russell Road

Quantico, VA 22134-5130

Director, Training and Education
MCCDC, Code C46

1019 Elliot Rd.

Quantico, VA 22134-5027

Chairman, Code EC
Department of Electrical and Computer Engineering

Naval Postgraduate School
Monterey, CA 93943-5121

Chairman, Code CS
Department of Computer Science

Naval Postgraduate School
Monterey, CA 93943-5118

Prof. Xiaoping Yun, , Code EC/Yx

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

159

10.

11.

12.

13.

14.

15.

Prof.Robert B. McGhee, Code CS/Mz
Department of Computer Science
Naval Postgraduate School

Monterey, CA 93943-5118

Dr. James Clynch, Code OC/CL
Department of Oceanography
Naval Postgraduate School
Monterey, CA 93943-5122

Russ Whalen, Code CS
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

CMDR R.W. Olson, USNR
308 N.E. 3rd St.
Little Falls, MN 56345

LT. Eric R. Bachmann, USN
1281 Spruance Rd.
Monterey, CA 93940

Mr. Norman Caplan
National Science Foundation
BES, Room 565

4201 Wilson Blvd.
Arlington, VA 22230

Michael B. Matthews

Monterey Bay Aquarium Research Institute

P.O. Box 628
Moss Landing, CA 95039

160

